| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoinv.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
tendoinv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
tendoinv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
tendoinv.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
tendoinv.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 6 |
|
tendoinv.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
tendoinv.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
| 8 |
|
tendoinv.n |
⊢ 𝑁 = ( invr ‘ 𝐹 ) |
| 9 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
2 9 6 7
|
dvhsca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 11 |
2 9
|
erngdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
| 12 |
10 11
|
eqeltrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐹 ∈ DivRing ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝐹 ∈ DivRing ) |
| 14 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ∈ 𝐸 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 16 |
2 4 6 7 15
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐹 ) = 𝐸 ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( Base ‘ 𝐹 ) = 𝐸 ) |
| 18 |
14 17
|
eleqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ∈ ( Base ‘ 𝐹 ) ) |
| 19 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ≠ 𝑂 ) |
| 20 |
10
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 22 |
1 2 3 9 5 21
|
erng0g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑂 ) |
| 23 |
20 22
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝐹 ) = 𝑂 ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 0g ‘ 𝐹 ) = 𝑂 ) |
| 25 |
19 24
|
neeqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ≠ ( 0g ‘ 𝐹 ) ) |
| 26 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 27 |
15 26 8
|
drnginvrcl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( Base ‘ 𝐹 ) ∧ 𝑆 ≠ ( 0g ‘ 𝐹 ) ) → ( 𝑁 ‘ 𝑆 ) ∈ ( Base ‘ 𝐹 ) ) |
| 28 |
13 18 25 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑁 ‘ 𝑆 ) ∈ ( Base ‘ 𝐹 ) ) |
| 29 |
28 17
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑁 ‘ 𝑆 ) ∈ 𝐸 ) |
| 30 |
15 26 8
|
drnginvrn0 |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( Base ‘ 𝐹 ) ∧ 𝑆 ≠ ( 0g ‘ 𝐹 ) ) → ( 𝑁 ‘ 𝑆 ) ≠ ( 0g ‘ 𝐹 ) ) |
| 31 |
13 18 25 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑁 ‘ 𝑆 ) ≠ ( 0g ‘ 𝐹 ) ) |
| 32 |
31 24
|
neeqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑁 ‘ 𝑆 ) ≠ 𝑂 ) |
| 33 |
29 32
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( ( 𝑁 ‘ 𝑆 ) ∈ 𝐸 ∧ ( 𝑁 ‘ 𝑆 ) ≠ 𝑂 ) ) |