Metamath Proof Explorer


Theorem tendolinv

Description: Left multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses tendoinv.b 𝐵 = ( Base ‘ 𝐾 )
tendoinv.h 𝐻 = ( LHyp ‘ 𝐾 )
tendoinv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendoinv.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
tendoinv.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
tendoinv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
tendoinv.f 𝐹 = ( Scalar ‘ 𝑈 )
tendoinv.n 𝑁 = ( invr𝐹 )
Assertion tendolinv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( ( 𝑁𝑆 ) ∘ 𝑆 ) = ( I ↾ 𝑇 ) )

Proof

Step Hyp Ref Expression
1 tendoinv.b 𝐵 = ( Base ‘ 𝐾 )
2 tendoinv.h 𝐻 = ( LHyp ‘ 𝐾 )
3 tendoinv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 tendoinv.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
5 tendoinv.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
6 tendoinv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 tendoinv.f 𝐹 = ( Scalar ‘ 𝑈 )
8 tendoinv.n 𝑁 = ( invr𝐹 )
9 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
11 2 10 6 7 dvhsca ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
12 9 11 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
13 2 10 erngdv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing )
14 9 13 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing )
15 12 14 eqeltrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → 𝐹 ∈ DivRing )
16 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → 𝑆𝐸 )
17 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
18 2 4 6 7 17 dvhbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝐹 ) = 𝐸 )
19 9 18 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( Base ‘ 𝐹 ) = 𝐸 )
20 16 19 eleqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → 𝑆 ∈ ( Base ‘ 𝐹 ) )
21 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → 𝑆𝑂 )
22 11 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 0g𝐹 ) = ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
23 eqid ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
24 1 2 3 10 5 23 erng0g ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑂 )
25 22 24 eqtrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 0g𝐹 ) = 𝑂 )
26 9 25 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( 0g𝐹 ) = 𝑂 )
27 21 26 neeqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → 𝑆 ≠ ( 0g𝐹 ) )
28 eqid ( 0g𝐹 ) = ( 0g𝐹 )
29 eqid ( .r𝐹 ) = ( .r𝐹 )
30 eqid ( 1r𝐹 ) = ( 1r𝐹 )
31 17 28 29 30 8 drnginvrl ( ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( Base ‘ 𝐹 ) ∧ 𝑆 ≠ ( 0g𝐹 ) ) → ( ( 𝑁𝑆 ) ( .r𝐹 ) 𝑆 ) = ( 1r𝐹 ) )
32 15 20 27 31 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( ( 𝑁𝑆 ) ( .r𝐹 ) 𝑆 ) = ( 1r𝐹 ) )
33 1 2 3 4 5 6 7 8 tendoinvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( ( 𝑁𝑆 ) ∈ 𝐸 ∧ ( 𝑁𝑆 ) ≠ 𝑂 ) )
34 33 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( 𝑁𝑆 ) ∈ 𝐸 )
35 2 3 4 6 7 29 dvhmulr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑁𝑆 ) ∈ 𝐸𝑆𝐸 ) ) → ( ( 𝑁𝑆 ) ( .r𝐹 ) 𝑆 ) = ( ( 𝑁𝑆 ) ∘ 𝑆 ) )
36 9 34 16 35 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( ( 𝑁𝑆 ) ( .r𝐹 ) 𝑆 ) = ( ( 𝑁𝑆 ) ∘ 𝑆 ) )
37 11 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 1r𝐹 ) = ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
38 eqid ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
39 2 3 10 38 erng1r ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( I ↾ 𝑇 ) )
40 37 39 eqtrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 1r𝐹 ) = ( I ↾ 𝑇 ) )
41 9 40 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( 1r𝐹 ) = ( I ↾ 𝑇 ) )
42 32 36 41 3eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸𝑆𝑂 ) → ( ( 𝑁𝑆 ) ∘ 𝑆 ) = ( I ↾ 𝑇 ) )