Step |
Hyp |
Ref |
Expression |
1 |
|
tendoinv.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
tendoinv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendoinv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoinv.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
tendoinv.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
6 |
|
tendoinv.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
tendoinv.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
8 |
|
tendoinv.n |
⊢ 𝑁 = ( invr ‘ 𝐹 ) |
9 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
2 10 6 7
|
dvhsca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
9 11
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
2 10
|
erngdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
14 |
9 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
15 |
12 14
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝐹 ∈ DivRing ) |
16 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ∈ 𝐸 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
18 |
2 4 6 7 17
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐹 ) = 𝐸 ) |
19 |
9 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( Base ‘ 𝐹 ) = 𝐸 ) |
20 |
16 19
|
eleqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ∈ ( Base ‘ 𝐹 ) ) |
21 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ≠ 𝑂 ) |
22 |
11
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
24 |
1 2 3 10 5 23
|
erng0g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑂 ) |
25 |
22 24
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0g ‘ 𝐹 ) = 𝑂 ) |
26 |
9 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 0g ‘ 𝐹 ) = 𝑂 ) |
27 |
21 26
|
neeqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → 𝑆 ≠ ( 0g ‘ 𝐹 ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
29 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
30 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
31 |
17 28 29 30 8
|
drnginvrr |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( Base ‘ 𝐹 ) ∧ 𝑆 ≠ ( 0g ‘ 𝐹 ) ) → ( 𝑆 ( .r ‘ 𝐹 ) ( 𝑁 ‘ 𝑆 ) ) = ( 1r ‘ 𝐹 ) ) |
32 |
15 20 27 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑆 ( .r ‘ 𝐹 ) ( 𝑁 ‘ 𝑆 ) ) = ( 1r ‘ 𝐹 ) ) |
33 |
1 2 3 4 5 6 7 8
|
tendoinvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( ( 𝑁 ‘ 𝑆 ) ∈ 𝐸 ∧ ( 𝑁 ‘ 𝑆 ) ≠ 𝑂 ) ) |
34 |
33
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑁 ‘ 𝑆 ) ∈ 𝐸 ) |
35 |
2 3 4 6 7 29
|
dvhmulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ∈ 𝐸 ∧ ( 𝑁 ‘ 𝑆 ) ∈ 𝐸 ) ) → ( 𝑆 ( .r ‘ 𝐹 ) ( 𝑁 ‘ 𝑆 ) ) = ( 𝑆 ∘ ( 𝑁 ‘ 𝑆 ) ) ) |
36 |
9 16 34 35
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑆 ( .r ‘ 𝐹 ) ( 𝑁 ‘ 𝑆 ) ) = ( 𝑆 ∘ ( 𝑁 ‘ 𝑆 ) ) ) |
37 |
11
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ 𝐹 ) = ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
38 |
|
eqid |
⊢ ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
39 |
2 3 10 38
|
erng1r |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( I ↾ 𝑇 ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ 𝐹 ) = ( I ↾ 𝑇 ) ) |
41 |
9 40
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 1r ‘ 𝐹 ) = ( I ↾ 𝑇 ) ) |
42 |
32 36 41
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂 ) → ( 𝑆 ∘ ( 𝑁 ‘ 𝑆 ) ) = ( I ↾ 𝑇 ) ) |