Metamath Proof Explorer


Theorem dvhgrp

Description: The full vector space U constructed from a Hilbert lattice K (given a fiducial hyperplane W ) is a group. (Contributed by NM, 19-Oct-2013) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses dvhgrp.b 𝐵 = ( Base ‘ 𝐾 )
dvhgrp.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhgrp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvhgrp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhgrp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhgrp.d 𝐷 = ( Scalar ‘ 𝑈 )
dvhgrp.p = ( +g𝐷 )
dvhgrp.a + = ( +g𝑈 )
dvhgrp.o 0 = ( 0g𝐷 )
dvhgrp.i 𝐼 = ( invg𝐷 )
Assertion dvhgrp ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑈 ∈ Grp )

Proof

Step Hyp Ref Expression
1 dvhgrp.b 𝐵 = ( Base ‘ 𝐾 )
2 dvhgrp.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dvhgrp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 dvhgrp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
5 dvhgrp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dvhgrp.d 𝐷 = ( Scalar ‘ 𝑈 )
7 dvhgrp.p = ( +g𝐷 )
8 dvhgrp.a + = ( +g𝑈 )
9 dvhgrp.o 0 = ( 0g𝐷 )
10 dvhgrp.i 𝐼 = ( invg𝐷 )
11 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
12 2 3 4 5 11 dvhvbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝑈 ) = ( 𝑇 × 𝐸 ) )
13 12 eqcomd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑇 × 𝐸 ) = ( Base ‘ 𝑈 ) )
14 8 a1i ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → + = ( +g𝑈 ) )
15 2 3 4 5 6 7 8 dvhvaddcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑔 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑓 + 𝑔 ) ∈ ( 𝑇 × 𝐸 ) )
16 15 3impb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑔 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝑓 + 𝑔 ) ∈ ( 𝑇 × 𝐸 ) )
17 2 3 4 5 6 7 8 dvhvaddass ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑔 ∈ ( 𝑇 × 𝐸 ) ∧ ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑓 + 𝑔 ) + ) = ( 𝑓 + ( 𝑔 + ) ) )
18 1 2 3 idltrn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 )
19 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
20 2 19 5 6 dvhsca ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
21 2 19 erngdv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing )
22 20 21 eqeltrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ DivRing )
23 drnggrp ( 𝐷 ∈ DivRing → 𝐷 ∈ Grp )
24 22 23 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ Grp )
25 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
26 25 9 grpidcl ( 𝐷 ∈ Grp → 0 ∈ ( Base ‘ 𝐷 ) )
27 24 26 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 0 ∈ ( Base ‘ 𝐷 ) )
28 2 4 5 6 25 dvhbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 )
29 27 28 eleqtrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 0𝐸 )
30 opelxpi ( ( ( I ↾ 𝐵 ) ∈ 𝑇0𝐸 ) → ⟨ ( I ↾ 𝐵 ) , 0 ⟩ ∈ ( 𝑇 × 𝐸 ) )
31 18 29 30 syl2anc ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ⟨ ( I ↾ 𝐵 ) , 0 ⟩ ∈ ( 𝑇 × 𝐸 ) )
32 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 18 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( I ↾ 𝐵 ) ∈ 𝑇 )
34 29 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → 0𝐸 )
35 xp1st ( 𝑓 ∈ ( 𝑇 × 𝐸 ) → ( 1st𝑓 ) ∈ 𝑇 )
36 35 adantl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 1st𝑓 ) ∈ 𝑇 )
37 xp2nd ( 𝑓 ∈ ( 𝑇 × 𝐸 ) → ( 2nd𝑓 ) ∈ 𝐸 )
38 37 adantl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 2nd𝑓 ) ∈ 𝐸 )
39 2 3 4 5 6 8 7 dvhopvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( I ↾ 𝐵 ) ∈ 𝑇0𝐸 ) ∧ ( ( 1st𝑓 ) ∈ 𝑇 ∧ ( 2nd𝑓 ) ∈ 𝐸 ) ) → ( ⟨ ( I ↾ 𝐵 ) , 0+ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) = ⟨ ( ( I ↾ 𝐵 ) ∘ ( 1st𝑓 ) ) , ( 0 ( 2nd𝑓 ) ) ⟩ )
40 32 33 34 36 38 39 syl122anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( I ↾ 𝐵 ) , 0+ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) = ⟨ ( ( I ↾ 𝐵 ) ∘ ( 1st𝑓 ) ) , ( 0 ( 2nd𝑓 ) ) ⟩ )
41 1 2 3 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 1st𝑓 ) ∈ 𝑇 ) → ( 1st𝑓 ) : 𝐵1-1-onto𝐵 )
42 36 41 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 1st𝑓 ) : 𝐵1-1-onto𝐵 )
43 f1of ( ( 1st𝑓 ) : 𝐵1-1-onto𝐵 → ( 1st𝑓 ) : 𝐵𝐵 )
44 fcoi2 ( ( 1st𝑓 ) : 𝐵𝐵 → ( ( I ↾ 𝐵 ) ∘ ( 1st𝑓 ) ) = ( 1st𝑓 ) )
45 42 43 44 3syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ( I ↾ 𝐵 ) ∘ ( 1st𝑓 ) ) = ( 1st𝑓 ) )
46 24 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → 𝐷 ∈ Grp )
47 28 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( Base ‘ 𝐷 ) = 𝐸 )
48 38 47 eleqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 2nd𝑓 ) ∈ ( Base ‘ 𝐷 ) )
49 25 7 9 grplid ( ( 𝐷 ∈ Grp ∧ ( 2nd𝑓 ) ∈ ( Base ‘ 𝐷 ) ) → ( 0 ( 2nd𝑓 ) ) = ( 2nd𝑓 ) )
50 46 48 49 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 0 ( 2nd𝑓 ) ) = ( 2nd𝑓 ) )
51 45 50 opeq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ⟨ ( ( I ↾ 𝐵 ) ∘ ( 1st𝑓 ) ) , ( 0 ( 2nd𝑓 ) ) ⟩ = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
52 40 51 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( I ↾ 𝐵 ) , 0+ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
53 1st2nd2 ( 𝑓 ∈ ( 𝑇 × 𝐸 ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
54 53 adantl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
55 54 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( I ↾ 𝐵 ) , 0+ 𝑓 ) = ( ⟨ ( I ↾ 𝐵 ) , 0+ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) )
56 52 55 54 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( I ↾ 𝐵 ) , 0+ 𝑓 ) = 𝑓 )
57 2 3 ltrncnv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 1st𝑓 ) ∈ 𝑇 ) → ( 1st𝑓 ) ∈ 𝑇 )
58 36 57 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 1st𝑓 ) ∈ 𝑇 )
59 25 10 grpinvcl ( ( 𝐷 ∈ Grp ∧ ( 2nd𝑓 ) ∈ ( Base ‘ 𝐷 ) ) → ( 𝐼 ‘ ( 2nd𝑓 ) ) ∈ ( Base ‘ 𝐷 ) )
60 46 48 59 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝐼 ‘ ( 2nd𝑓 ) ) ∈ ( Base ‘ 𝐷 ) )
61 60 47 eleqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝐼 ‘ ( 2nd𝑓 ) ) ∈ 𝐸 )
62 opelxpi ( ( ( 1st𝑓 ) ∈ 𝑇 ∧ ( 𝐼 ‘ ( 2nd𝑓 ) ) ∈ 𝐸 ) → ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ ∈ ( 𝑇 × 𝐸 ) )
63 58 61 62 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ ∈ ( 𝑇 × 𝐸 ) )
64 54 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ + 𝑓 ) = ( ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ + ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) )
65 2 3 4 5 6 8 7 dvhopvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 1st𝑓 ) ∈ 𝑇 ∧ ( 𝐼 ‘ ( 2nd𝑓 ) ) ∈ 𝐸 ) ∧ ( ( 1st𝑓 ) ∈ 𝑇 ∧ ( 2nd𝑓 ) ∈ 𝐸 ) ) → ( ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ + ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) = ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑓 ) ) , ( ( 𝐼 ‘ ( 2nd𝑓 ) ) ( 2nd𝑓 ) ) ⟩ )
66 32 58 61 36 38 65 syl122anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ + ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) = ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑓 ) ) , ( ( 𝐼 ‘ ( 2nd𝑓 ) ) ( 2nd𝑓 ) ) ⟩ )
67 f1ococnv1 ( ( 1st𝑓 ) : 𝐵1-1-onto𝐵 → ( ( 1st𝑓 ) ∘ ( 1st𝑓 ) ) = ( I ↾ 𝐵 ) )
68 42 67 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ( 1st𝑓 ) ∘ ( 1st𝑓 ) ) = ( I ↾ 𝐵 ) )
69 25 7 9 10 grplinv ( ( 𝐷 ∈ Grp ∧ ( 2nd𝑓 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐼 ‘ ( 2nd𝑓 ) ) ( 2nd𝑓 ) ) = 0 )
70 46 48 69 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ( 𝐼 ‘ ( 2nd𝑓 ) ) ( 2nd𝑓 ) ) = 0 )
71 68 70 opeq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑓 ) ) , ( ( 𝐼 ‘ ( 2nd𝑓 ) ) ( 2nd𝑓 ) ) ⟩ = ⟨ ( I ↾ 𝐵 ) , 0 ⟩ )
72 66 71 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ + ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) = ⟨ ( I ↾ 𝐵 ) , 0 ⟩ )
73 64 72 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) → ( ⟨ ( 1st𝑓 ) , ( 𝐼 ‘ ( 2nd𝑓 ) ) ⟩ + 𝑓 ) = ⟨ ( I ↾ 𝐵 ) , 0 ⟩ )
74 13 14 16 17 31 56 63 73 isgrpd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑈 ∈ Grp )