Metamath Proof Explorer


Theorem dvhvaddass

Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013)

Ref Expression
Hypotheses dvhvaddcl.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhvaddcl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvhvaddcl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhvaddcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhvaddcl.d 𝐷 = ( Scalar ‘ 𝑈 )
dvhvaddcl.p = ( +g𝐷 )
dvhvaddcl.a + = ( +g𝑈 )
Assertion dvhvaddass ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝐹 + 𝐺 ) + 𝐼 ) = ( 𝐹 + ( 𝐺 + 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 dvhvaddcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhvaddcl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvhvaddcl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvhvaddcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dvhvaddcl.d 𝐷 = ( Scalar ‘ 𝑈 )
6 dvhvaddcl.p = ( +g𝐷 )
7 dvhvaddcl.a + = ( +g𝑈 )
8 coass ( ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) ∘ ( 1st𝐼 ) ) = ( ( 1st𝐹 ) ∘ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) )
9 1 2 3 4 5 7 6 dvhvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + 𝐺 ) = ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ )
10 9 3adantr3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + 𝐺 ) = ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ )
11 10 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝐹 + 𝐺 ) ) = ( 1st ‘ ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ ) )
12 fvex ( 1st𝐹 ) ∈ V
13 fvex ( 1st𝐺 ) ∈ V
14 12 13 coex ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) ∈ V
15 ovex ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ∈ V
16 14 15 op1st ( 1st ‘ ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ ) = ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) )
17 11 16 eqtrdi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝐹 + 𝐺 ) ) = ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) )
18 17 coeq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 1st ‘ ( 𝐹 + 𝐺 ) ) ∘ ( 1st𝐼 ) ) = ( ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) ∘ ( 1st𝐼 ) ) )
19 1 2 3 4 5 7 6 dvhvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐺 + 𝐼 ) = ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) , ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ⟩ )
20 19 3adantr1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐺 + 𝐼 ) = ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) , ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ⟩ )
21 20 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝐺 + 𝐼 ) ) = ( 1st ‘ ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) , ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ⟩ ) )
22 fvex ( 1st𝐼 ) ∈ V
23 13 22 coex ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) ∈ V
24 ovex ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ∈ V
25 23 24 op1st ( 1st ‘ ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) , ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ⟩ ) = ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) )
26 21 25 eqtrdi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝐺 + 𝐼 ) ) = ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) )
27 26 coeq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 1st𝐹 ) ∘ ( 1st ‘ ( 𝐺 + 𝐼 ) ) ) = ( ( 1st𝐹 ) ∘ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) ) )
28 8 18 27 3eqtr4a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 1st ‘ ( 𝐹 + 𝐺 ) ) ∘ ( 1st𝐼 ) ) = ( ( 1st𝐹 ) ∘ ( 1st ‘ ( 𝐺 + 𝐼 ) ) ) )
29 xp2nd ( 𝐹 ∈ ( 𝑇 × 𝐸 ) → ( 2nd𝐹 ) ∈ 𝐸 )
30 xp2nd ( 𝐺 ∈ ( 𝑇 × 𝐸 ) → ( 2nd𝐺 ) ∈ 𝐸 )
31 xp2nd ( 𝐼 ∈ ( 𝑇 × 𝐸 ) → ( 2nd𝐼 ) ∈ 𝐸 )
32 29 30 31 3anim123i ( ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) → ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) )
33 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
34 1 33 4 5 dvhsca ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
35 1 33 erngdv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing )
36 34 35 eqeltrd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ DivRing )
37 drnggrp ( 𝐷 ∈ DivRing → 𝐷 ∈ Grp )
38 36 37 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐷 ∈ Grp )
39 38 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → 𝐷 ∈ Grp )
40 simpr1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( 2nd𝐹 ) ∈ 𝐸 )
41 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
42 1 3 4 5 41 dvhbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 )
43 42 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( Base ‘ 𝐷 ) = 𝐸 )
44 40 43 eleqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( 2nd𝐹 ) ∈ ( Base ‘ 𝐷 ) )
45 simpr2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( 2nd𝐺 ) ∈ 𝐸 )
46 45 43 eleqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( 2nd𝐺 ) ∈ ( Base ‘ 𝐷 ) )
47 simpr3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( 2nd𝐼 ) ∈ 𝐸 )
48 47 43 eleqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( 2nd𝐼 ) ∈ ( Base ‘ 𝐷 ) )
49 41 6 grpass ( ( 𝐷 ∈ Grp ∧ ( ( 2nd𝐹 ) ∈ ( Base ‘ 𝐷 ) ∧ ( 2nd𝐺 ) ∈ ( Base ‘ 𝐷 ) ∧ ( 2nd𝐼 ) ∈ ( Base ‘ 𝐷 ) ) ) → ( ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ( 2nd𝐼 ) ) = ( ( 2nd𝐹 ) ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ) )
50 39 44 46 48 49 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 2nd𝐹 ) ∈ 𝐸 ∧ ( 2nd𝐺 ) ∈ 𝐸 ∧ ( 2nd𝐼 ) ∈ 𝐸 ) ) → ( ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ( 2nd𝐼 ) ) = ( ( 2nd𝐹 ) ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ) )
51 32 50 sylan2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ( 2nd𝐼 ) ) = ( ( 2nd𝐹 ) ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ) )
52 10 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝐹 + 𝐺 ) ) = ( 2nd ‘ ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ ) )
53 14 15 op2nd ( 2nd ‘ ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ ) = ( ( 2nd𝐹 ) ( 2nd𝐺 ) )
54 52 53 eqtrdi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝐹 + 𝐺 ) ) = ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) )
55 54 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 2nd ‘ ( 𝐹 + 𝐺 ) ) ( 2nd𝐼 ) ) = ( ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ( 2nd𝐼 ) ) )
56 20 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝐺 + 𝐼 ) ) = ( 2nd ‘ ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) , ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ⟩ ) )
57 23 24 op2nd ( 2nd ‘ ⟨ ( ( 1st𝐺 ) ∘ ( 1st𝐼 ) ) , ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ⟩ ) = ( ( 2nd𝐺 ) ( 2nd𝐼 ) )
58 56 57 eqtrdi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝐺 + 𝐼 ) ) = ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) )
59 58 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 2nd𝐹 ) ( 2nd ‘ ( 𝐺 + 𝐼 ) ) ) = ( ( 2nd𝐹 ) ( ( 2nd𝐺 ) ( 2nd𝐼 ) ) ) )
60 51 55 59 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 2nd ‘ ( 𝐹 + 𝐺 ) ) ( 2nd𝐼 ) ) = ( ( 2nd𝐹 ) ( 2nd ‘ ( 𝐺 + 𝐼 ) ) ) )
61 28 60 opeq12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ⟨ ( ( 1st ‘ ( 𝐹 + 𝐺 ) ) ∘ ( 1st𝐼 ) ) , ( ( 2nd ‘ ( 𝐹 + 𝐺 ) ) ( 2nd𝐼 ) ) ⟩ = ⟨ ( ( 1st𝐹 ) ∘ ( 1st ‘ ( 𝐺 + 𝐼 ) ) ) , ( ( 2nd𝐹 ) ( 2nd ‘ ( 𝐺 + 𝐼 ) ) ) ⟩ )
62 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
63 1 2 3 4 5 6 7 dvhvaddcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + 𝐺 ) ∈ ( 𝑇 × 𝐸 ) )
64 63 3adantr3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + 𝐺 ) ∈ ( 𝑇 × 𝐸 ) )
65 simpr3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝐼 ∈ ( 𝑇 × 𝐸 ) )
66 1 2 3 4 5 7 6 dvhvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹 + 𝐺 ) ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝐹 + 𝐺 ) + 𝐼 ) = ⟨ ( ( 1st ‘ ( 𝐹 + 𝐺 ) ) ∘ ( 1st𝐼 ) ) , ( ( 2nd ‘ ( 𝐹 + 𝐺 ) ) ( 2nd𝐼 ) ) ⟩ )
67 62 64 65 66 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝐹 + 𝐺 ) + 𝐼 ) = ⟨ ( ( 1st ‘ ( 𝐹 + 𝐺 ) ) ∘ ( 1st𝐼 ) ) , ( ( 2nd ‘ ( 𝐹 + 𝐺 ) ) ( 2nd𝐼 ) ) ⟩ )
68 simpr1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝐹 ∈ ( 𝑇 × 𝐸 ) )
69 1 2 3 4 5 6 7 dvhvaddcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐺 + 𝐼 ) ∈ ( 𝑇 × 𝐸 ) )
70 69 3adantr1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐺 + 𝐼 ) ∈ ( 𝑇 × 𝐸 ) )
71 1 2 3 4 5 7 6 dvhvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ ( 𝐺 + 𝐼 ) ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + ( 𝐺 + 𝐼 ) ) = ⟨ ( ( 1st𝐹 ) ∘ ( 1st ‘ ( 𝐺 + 𝐼 ) ) ) , ( ( 2nd𝐹 ) ( 2nd ‘ ( 𝐺 + 𝐼 ) ) ) ⟩ )
72 62 68 70 71 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + ( 𝐺 + 𝐼 ) ) = ⟨ ( ( 1st𝐹 ) ∘ ( 1st ‘ ( 𝐺 + 𝐼 ) ) ) , ( ( 2nd𝐹 ) ( 2nd ‘ ( 𝐺 + 𝐼 ) ) ) ⟩ )
73 61 67 72 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐼 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝐹 + 𝐺 ) + 𝐼 ) = ( 𝐹 + ( 𝐺 + 𝐼 ) ) )