| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhvaddcl.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvhvaddcl.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
dvhvaddcl.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 4 |
|
dvhvaddcl.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dvhvaddcl.d |
|- D = ( Scalar ` U ) |
| 6 |
|
dvhvaddcl.p |
|- .+^ = ( +g ` D ) |
| 7 |
|
dvhvaddcl.a |
|- .+ = ( +g ` U ) |
| 8 |
|
coass |
|- ( ( ( 1st ` F ) o. ( 1st ` G ) ) o. ( 1st ` I ) ) = ( ( 1st ` F ) o. ( ( 1st ` G ) o. ( 1st ` I ) ) ) |
| 9 |
1 2 3 4 5 7 6
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) ) ) -> ( F .+ G ) = <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) |
| 10 |
9
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( F .+ G ) = <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) |
| 11 |
10
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 1st ` ( F .+ G ) ) = ( 1st ` <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) ) |
| 12 |
|
fvex |
|- ( 1st ` F ) e. _V |
| 13 |
|
fvex |
|- ( 1st ` G ) e. _V |
| 14 |
12 13
|
coex |
|- ( ( 1st ` F ) o. ( 1st ` G ) ) e. _V |
| 15 |
|
ovex |
|- ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) e. _V |
| 16 |
14 15
|
op1st |
|- ( 1st ` <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) = ( ( 1st ` F ) o. ( 1st ` G ) ) |
| 17 |
11 16
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 1st ` ( F .+ G ) ) = ( ( 1st ` F ) o. ( 1st ` G ) ) ) |
| 18 |
17
|
coeq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( 1st ` ( F .+ G ) ) o. ( 1st ` I ) ) = ( ( ( 1st ` F ) o. ( 1st ` G ) ) o. ( 1st ` I ) ) ) |
| 19 |
1 2 3 4 5 7 6
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( G .+ I ) = <. ( ( 1st ` G ) o. ( 1st ` I ) ) , ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) >. ) |
| 20 |
19
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( G .+ I ) = <. ( ( 1st ` G ) o. ( 1st ` I ) ) , ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) >. ) |
| 21 |
20
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 1st ` ( G .+ I ) ) = ( 1st ` <. ( ( 1st ` G ) o. ( 1st ` I ) ) , ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) >. ) ) |
| 22 |
|
fvex |
|- ( 1st ` I ) e. _V |
| 23 |
13 22
|
coex |
|- ( ( 1st ` G ) o. ( 1st ` I ) ) e. _V |
| 24 |
|
ovex |
|- ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) e. _V |
| 25 |
23 24
|
op1st |
|- ( 1st ` <. ( ( 1st ` G ) o. ( 1st ` I ) ) , ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) >. ) = ( ( 1st ` G ) o. ( 1st ` I ) ) |
| 26 |
21 25
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 1st ` ( G .+ I ) ) = ( ( 1st ` G ) o. ( 1st ` I ) ) ) |
| 27 |
26
|
coeq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( 1st ` F ) o. ( 1st ` ( G .+ I ) ) ) = ( ( 1st ` F ) o. ( ( 1st ` G ) o. ( 1st ` I ) ) ) ) |
| 28 |
8 18 27
|
3eqtr4a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( 1st ` ( F .+ G ) ) o. ( 1st ` I ) ) = ( ( 1st ` F ) o. ( 1st ` ( G .+ I ) ) ) ) |
| 29 |
|
xp2nd |
|- ( F e. ( T X. E ) -> ( 2nd ` F ) e. E ) |
| 30 |
|
xp2nd |
|- ( G e. ( T X. E ) -> ( 2nd ` G ) e. E ) |
| 31 |
|
xp2nd |
|- ( I e. ( T X. E ) -> ( 2nd ` I ) e. E ) |
| 32 |
29 30 31
|
3anim123i |
|- ( ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) -> ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) |
| 33 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
| 34 |
1 33 4 5
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> D = ( ( EDRing ` K ) ` W ) ) |
| 35 |
1 33
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
| 36 |
34 35
|
eqeltrd |
|- ( ( K e. HL /\ W e. H ) -> D e. DivRing ) |
| 37 |
|
drnggrp |
|- ( D e. DivRing -> D e. Grp ) |
| 38 |
36 37
|
syl |
|- ( ( K e. HL /\ W e. H ) -> D e. Grp ) |
| 39 |
38
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> D e. Grp ) |
| 40 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( 2nd ` F ) e. E ) |
| 41 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 42 |
1 3 4 5 41
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E ) |
| 43 |
42
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( Base ` D ) = E ) |
| 44 |
40 43
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( 2nd ` F ) e. ( Base ` D ) ) |
| 45 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( 2nd ` G ) e. E ) |
| 46 |
45 43
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( 2nd ` G ) e. ( Base ` D ) ) |
| 47 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( 2nd ` I ) e. E ) |
| 48 |
47 43
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( 2nd ` I ) e. ( Base ` D ) ) |
| 49 |
41 6
|
grpass |
|- ( ( D e. Grp /\ ( ( 2nd ` F ) e. ( Base ` D ) /\ ( 2nd ` G ) e. ( Base ` D ) /\ ( 2nd ` I ) e. ( Base ` D ) ) ) -> ( ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) .+^ ( 2nd ` I ) ) = ( ( 2nd ` F ) .+^ ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) ) ) |
| 50 |
39 44 46 48 49
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( 2nd ` F ) e. E /\ ( 2nd ` G ) e. E /\ ( 2nd ` I ) e. E ) ) -> ( ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) .+^ ( 2nd ` I ) ) = ( ( 2nd ` F ) .+^ ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) ) ) |
| 51 |
32 50
|
sylan2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) .+^ ( 2nd ` I ) ) = ( ( 2nd ` F ) .+^ ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) ) ) |
| 52 |
10
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 2nd ` ( F .+ G ) ) = ( 2nd ` <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) ) |
| 53 |
14 15
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) = ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) |
| 54 |
52 53
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 2nd ` ( F .+ G ) ) = ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) ) |
| 55 |
54
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( 2nd ` ( F .+ G ) ) .+^ ( 2nd ` I ) ) = ( ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) .+^ ( 2nd ` I ) ) ) |
| 56 |
20
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 2nd ` ( G .+ I ) ) = ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` I ) ) , ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) >. ) ) |
| 57 |
23 24
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` I ) ) , ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) >. ) = ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) |
| 58 |
56 57
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( 2nd ` ( G .+ I ) ) = ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) ) |
| 59 |
58
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( 2nd ` F ) .+^ ( 2nd ` ( G .+ I ) ) ) = ( ( 2nd ` F ) .+^ ( ( 2nd ` G ) .+^ ( 2nd ` I ) ) ) ) |
| 60 |
51 55 59
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( 2nd ` ( F .+ G ) ) .+^ ( 2nd ` I ) ) = ( ( 2nd ` F ) .+^ ( 2nd ` ( G .+ I ) ) ) ) |
| 61 |
28 60
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> <. ( ( 1st ` ( F .+ G ) ) o. ( 1st ` I ) ) , ( ( 2nd ` ( F .+ G ) ) .+^ ( 2nd ` I ) ) >. = <. ( ( 1st ` F ) o. ( 1st ` ( G .+ I ) ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` ( G .+ I ) ) ) >. ) |
| 62 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 63 |
1 2 3 4 5 6 7
|
dvhvaddcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) ) ) -> ( F .+ G ) e. ( T X. E ) ) |
| 64 |
63
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( F .+ G ) e. ( T X. E ) ) |
| 65 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> I e. ( T X. E ) ) |
| 66 |
1 2 3 4 5 7 6
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F .+ G ) e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( F .+ G ) .+ I ) = <. ( ( 1st ` ( F .+ G ) ) o. ( 1st ` I ) ) , ( ( 2nd ` ( F .+ G ) ) .+^ ( 2nd ` I ) ) >. ) |
| 67 |
62 64 65 66
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( F .+ G ) .+ I ) = <. ( ( 1st ` ( F .+ G ) ) o. ( 1st ` I ) ) , ( ( 2nd ` ( F .+ G ) ) .+^ ( 2nd ` I ) ) >. ) |
| 68 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> F e. ( T X. E ) ) |
| 69 |
1 2 3 4 5 6 7
|
dvhvaddcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( G .+ I ) e. ( T X. E ) ) |
| 70 |
69
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( G .+ I ) e. ( T X. E ) ) |
| 71 |
1 2 3 4 5 7 6
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ ( G .+ I ) e. ( T X. E ) ) ) -> ( F .+ ( G .+ I ) ) = <. ( ( 1st ` F ) o. ( 1st ` ( G .+ I ) ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` ( G .+ I ) ) ) >. ) |
| 72 |
62 68 70 71
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( F .+ ( G .+ I ) ) = <. ( ( 1st ` F ) o. ( 1st ` ( G .+ I ) ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` ( G .+ I ) ) ) >. ) |
| 73 |
61 67 72
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) /\ I e. ( T X. E ) ) ) -> ( ( F .+ G ) .+ I ) = ( F .+ ( G .+ I ) ) ) |