| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhgrp.b |
|- B = ( Base ` K ) |
| 2 |
|
dvhgrp.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dvhgrp.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
dvhgrp.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 5 |
|
dvhgrp.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 6 |
|
dvhgrp.d |
|- D = ( Scalar ` U ) |
| 7 |
|
dvhgrp.p |
|- .+^ = ( +g ` D ) |
| 8 |
|
dvhgrp.a |
|- .+ = ( +g ` U ) |
| 9 |
|
dvhgrp.o |
|- .0. = ( 0g ` D ) |
| 10 |
|
dvhgrp.i |
|- I = ( invg ` D ) |
| 11 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 12 |
2 3 4 5 11
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( T X. E ) ) |
| 13 |
12
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( T X. E ) = ( Base ` U ) ) |
| 14 |
8
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .+ = ( +g ` U ) ) |
| 15 |
2 3 4 5 6 7 8
|
dvhvaddcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( T X. E ) /\ g e. ( T X. E ) ) ) -> ( f .+ g ) e. ( T X. E ) ) |
| 16 |
15
|
3impb |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) /\ g e. ( T X. E ) ) -> ( f .+ g ) e. ( T X. E ) ) |
| 17 |
2 3 4 5 6 7 8
|
dvhvaddass |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( T X. E ) /\ g e. ( T X. E ) /\ h e. ( T X. E ) ) ) -> ( ( f .+ g ) .+ h ) = ( f .+ ( g .+ h ) ) ) |
| 18 |
1 2 3
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
| 19 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
| 20 |
2 19 5 6
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> D = ( ( EDRing ` K ) ` W ) ) |
| 21 |
2 19
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
| 22 |
20 21
|
eqeltrd |
|- ( ( K e. HL /\ W e. H ) -> D e. DivRing ) |
| 23 |
|
drnggrp |
|- ( D e. DivRing -> D e. Grp ) |
| 24 |
22 23
|
syl |
|- ( ( K e. HL /\ W e. H ) -> D e. Grp ) |
| 25 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 26 |
25 9
|
grpidcl |
|- ( D e. Grp -> .0. e. ( Base ` D ) ) |
| 27 |
24 26
|
syl |
|- ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` D ) ) |
| 28 |
2 4 5 6 25
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E ) |
| 29 |
27 28
|
eleqtrd |
|- ( ( K e. HL /\ W e. H ) -> .0. e. E ) |
| 30 |
|
opelxpi |
|- ( ( ( _I |` B ) e. T /\ .0. e. E ) -> <. ( _I |` B ) , .0. >. e. ( T X. E ) ) |
| 31 |
18 29 30
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> <. ( _I |` B ) , .0. >. e. ( T X. E ) ) |
| 32 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( K e. HL /\ W e. H ) ) |
| 33 |
18
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( _I |` B ) e. T ) |
| 34 |
29
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> .0. e. E ) |
| 35 |
|
xp1st |
|- ( f e. ( T X. E ) -> ( 1st ` f ) e. T ) |
| 36 |
35
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 1st ` f ) e. T ) |
| 37 |
|
xp2nd |
|- ( f e. ( T X. E ) -> ( 2nd ` f ) e. E ) |
| 38 |
37
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 2nd ` f ) e. E ) |
| 39 |
2 3 4 5 6 8 7
|
dvhopvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` B ) e. T /\ .0. e. E ) /\ ( ( 1st ` f ) e. T /\ ( 2nd ` f ) e. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( ( _I |` B ) o. ( 1st ` f ) ) , ( .0. .+^ ( 2nd ` f ) ) >. ) |
| 40 |
32 33 34 36 38 39
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( ( _I |` B ) o. ( 1st ` f ) ) , ( .0. .+^ ( 2nd ` f ) ) >. ) |
| 41 |
1 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ ( 1st ` f ) e. T ) -> ( 1st ` f ) : B -1-1-onto-> B ) |
| 42 |
36 41
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 1st ` f ) : B -1-1-onto-> B ) |
| 43 |
|
f1of |
|- ( ( 1st ` f ) : B -1-1-onto-> B -> ( 1st ` f ) : B --> B ) |
| 44 |
|
fcoi2 |
|- ( ( 1st ` f ) : B --> B -> ( ( _I |` B ) o. ( 1st ` f ) ) = ( 1st ` f ) ) |
| 45 |
42 43 44
|
3syl |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( ( _I |` B ) o. ( 1st ` f ) ) = ( 1st ` f ) ) |
| 46 |
24
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> D e. Grp ) |
| 47 |
28
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( Base ` D ) = E ) |
| 48 |
38 47
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) |
| 49 |
25 7 9
|
grplid |
|- ( ( D e. Grp /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( .0. .+^ ( 2nd ` f ) ) = ( 2nd ` f ) ) |
| 50 |
46 48 49
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( .0. .+^ ( 2nd ` f ) ) = ( 2nd ` f ) ) |
| 51 |
45 50
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> <. ( ( _I |` B ) o. ( 1st ` f ) ) , ( .0. .+^ ( 2nd ` f ) ) >. = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 52 |
40 51
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 53 |
|
1st2nd2 |
|- ( f e. ( T X. E ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 54 |
53
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 55 |
54
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ f ) = ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 56 |
52 55 54
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ f ) = f ) |
| 57 |
2 3
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( 1st ` f ) e. T ) -> `' ( 1st ` f ) e. T ) |
| 58 |
36 57
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> `' ( 1st ` f ) e. T ) |
| 59 |
25 10
|
grpinvcl |
|- ( ( D e. Grp /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( I ` ( 2nd ` f ) ) e. ( Base ` D ) ) |
| 60 |
46 48 59
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( I ` ( 2nd ` f ) ) e. ( Base ` D ) ) |
| 61 |
60 47
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( I ` ( 2nd ` f ) ) e. E ) |
| 62 |
|
opelxpi |
|- ( ( `' ( 1st ` f ) e. T /\ ( I ` ( 2nd ` f ) ) e. E ) -> <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. e. ( T X. E ) ) |
| 63 |
58 61 62
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. e. ( T X. E ) ) |
| 64 |
54
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ f ) = ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 65 |
2 3 4 5 6 8 7
|
dvhopvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' ( 1st ` f ) e. T /\ ( I ` ( 2nd ` f ) ) e. E ) /\ ( ( 1st ` f ) e. T /\ ( 2nd ` f ) e. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( `' ( 1st ` f ) o. ( 1st ` f ) ) , ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) >. ) |
| 66 |
32 58 61 36 38 65
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( `' ( 1st ` f ) o. ( 1st ` f ) ) , ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) >. ) |
| 67 |
|
f1ococnv1 |
|- ( ( 1st ` f ) : B -1-1-onto-> B -> ( `' ( 1st ` f ) o. ( 1st ` f ) ) = ( _I |` B ) ) |
| 68 |
42 67
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( `' ( 1st ` f ) o. ( 1st ` f ) ) = ( _I |` B ) ) |
| 69 |
25 7 9 10
|
grplinv |
|- ( ( D e. Grp /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) = .0. ) |
| 70 |
46 48 69
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) = .0. ) |
| 71 |
68 70
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> <. ( `' ( 1st ` f ) o. ( 1st ` f ) ) , ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) >. = <. ( _I |` B ) , .0. >. ) |
| 72 |
66 71
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( _I |` B ) , .0. >. ) |
| 73 |
64 72
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ f ) = <. ( _I |` B ) , .0. >. ) |
| 74 |
13 14 16 17 31 56 63 73
|
isgrpd |
|- ( ( K e. HL /\ W e. H ) -> U e. Grp ) |