| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvhgrp.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | dvhgrp.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | dvhgrp.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 4 |  | dvhgrp.e |  |-  E = ( ( TEndo ` K ) ` W ) | 
						
							| 5 |  | dvhgrp.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 6 |  | dvhgrp.d |  |-  D = ( Scalar ` U ) | 
						
							| 7 |  | dvhgrp.p |  |-  .+^ = ( +g ` D ) | 
						
							| 8 |  | dvhgrp.a |  |-  .+ = ( +g ` U ) | 
						
							| 9 |  | dvhgrp.o |  |-  .0. = ( 0g ` D ) | 
						
							| 10 |  | dvhgrp.i |  |-  I = ( invg ` D ) | 
						
							| 11 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 12 | 2 3 4 5 11 | dvhvbase |  |-  ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( T X. E ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( K e. HL /\ W e. H ) -> ( T X. E ) = ( Base ` U ) ) | 
						
							| 14 | 8 | a1i |  |-  ( ( K e. HL /\ W e. H ) -> .+ = ( +g ` U ) ) | 
						
							| 15 | 2 3 4 5 6 7 8 | dvhvaddcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( T X. E ) /\ g e. ( T X. E ) ) ) -> ( f .+ g ) e. ( T X. E ) ) | 
						
							| 16 | 15 | 3impb |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) /\ g e. ( T X. E ) ) -> ( f .+ g ) e. ( T X. E ) ) | 
						
							| 17 | 2 3 4 5 6 7 8 | dvhvaddass |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( T X. E ) /\ g e. ( T X. E ) /\ h e. ( T X. E ) ) ) -> ( ( f .+ g ) .+ h ) = ( f .+ ( g .+ h ) ) ) | 
						
							| 18 | 1 2 3 | idltrn |  |-  ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) | 
						
							| 19 |  | eqid |  |-  ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) | 
						
							| 20 | 2 19 5 6 | dvhsca |  |-  ( ( K e. HL /\ W e. H ) -> D = ( ( EDRing ` K ) ` W ) ) | 
						
							| 21 | 2 19 | erngdv |  |-  ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) | 
						
							| 22 | 20 21 | eqeltrd |  |-  ( ( K e. HL /\ W e. H ) -> D e. DivRing ) | 
						
							| 23 |  | drnggrp |  |-  ( D e. DivRing -> D e. Grp ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( K e. HL /\ W e. H ) -> D e. Grp ) | 
						
							| 25 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 26 | 25 9 | grpidcl |  |-  ( D e. Grp -> .0. e. ( Base ` D ) ) | 
						
							| 27 | 24 26 | syl |  |-  ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` D ) ) | 
						
							| 28 | 2 4 5 6 25 | dvhbase |  |-  ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E ) | 
						
							| 29 | 27 28 | eleqtrd |  |-  ( ( K e. HL /\ W e. H ) -> .0. e. E ) | 
						
							| 30 |  | opelxpi |  |-  ( ( ( _I |` B ) e. T /\ .0. e. E ) -> <. ( _I |` B ) , .0. >. e. ( T X. E ) ) | 
						
							| 31 | 18 29 30 | syl2anc |  |-  ( ( K e. HL /\ W e. H ) -> <. ( _I |` B ) , .0. >. e. ( T X. E ) ) | 
						
							| 32 |  | simpl |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 33 | 18 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( _I |` B ) e. T ) | 
						
							| 34 | 29 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> .0. e. E ) | 
						
							| 35 |  | xp1st |  |-  ( f e. ( T X. E ) -> ( 1st ` f ) e. T ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 1st ` f ) e. T ) | 
						
							| 37 |  | xp2nd |  |-  ( f e. ( T X. E ) -> ( 2nd ` f ) e. E ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 2nd ` f ) e. E ) | 
						
							| 39 | 2 3 4 5 6 8 7 | dvhopvadd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` B ) e. T /\ .0. e. E ) /\ ( ( 1st ` f ) e. T /\ ( 2nd ` f ) e. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( ( _I |` B ) o. ( 1st ` f ) ) , ( .0. .+^ ( 2nd ` f ) ) >. ) | 
						
							| 40 | 32 33 34 36 38 39 | syl122anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( ( _I |` B ) o. ( 1st ` f ) ) , ( .0. .+^ ( 2nd ` f ) ) >. ) | 
						
							| 41 | 1 2 3 | ltrn1o |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( 1st ` f ) e. T ) -> ( 1st ` f ) : B -1-1-onto-> B ) | 
						
							| 42 | 36 41 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 1st ` f ) : B -1-1-onto-> B ) | 
						
							| 43 |  | f1of |  |-  ( ( 1st ` f ) : B -1-1-onto-> B -> ( 1st ` f ) : B --> B ) | 
						
							| 44 |  | fcoi2 |  |-  ( ( 1st ` f ) : B --> B -> ( ( _I |` B ) o. ( 1st ` f ) ) = ( 1st ` f ) ) | 
						
							| 45 | 42 43 44 | 3syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( ( _I |` B ) o. ( 1st ` f ) ) = ( 1st ` f ) ) | 
						
							| 46 | 24 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> D e. Grp ) | 
						
							| 47 | 28 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( Base ` D ) = E ) | 
						
							| 48 | 38 47 | eleqtrrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) | 
						
							| 49 | 25 7 9 | grplid |  |-  ( ( D e. Grp /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( .0. .+^ ( 2nd ` f ) ) = ( 2nd ` f ) ) | 
						
							| 50 | 46 48 49 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( .0. .+^ ( 2nd ` f ) ) = ( 2nd ` f ) ) | 
						
							| 51 | 45 50 | opeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> <. ( ( _I |` B ) o. ( 1st ` f ) ) , ( .0. .+^ ( 2nd ` f ) ) >. = <. ( 1st ` f ) , ( 2nd ` f ) >. ) | 
						
							| 52 | 40 51 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( 1st ` f ) , ( 2nd ` f ) >. ) | 
						
							| 53 |  | 1st2nd2 |  |-  ( f e. ( T X. E ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) | 
						
							| 55 | 54 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ f ) = ( <. ( _I |` B ) , .0. >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) | 
						
							| 56 | 52 55 54 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. ( _I |` B ) , .0. >. .+ f ) = f ) | 
						
							| 57 | 2 3 | ltrncnv |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( 1st ` f ) e. T ) -> `' ( 1st ` f ) e. T ) | 
						
							| 58 | 36 57 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> `' ( 1st ` f ) e. T ) | 
						
							| 59 | 25 10 | grpinvcl |  |-  ( ( D e. Grp /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( I ` ( 2nd ` f ) ) e. ( Base ` D ) ) | 
						
							| 60 | 46 48 59 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( I ` ( 2nd ` f ) ) e. ( Base ` D ) ) | 
						
							| 61 | 60 47 | eleqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( I ` ( 2nd ` f ) ) e. E ) | 
						
							| 62 |  | opelxpi |  |-  ( ( `' ( 1st ` f ) e. T /\ ( I ` ( 2nd ` f ) ) e. E ) -> <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. e. ( T X. E ) ) | 
						
							| 63 | 58 61 62 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. e. ( T X. E ) ) | 
						
							| 64 | 54 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ f ) = ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) | 
						
							| 65 | 2 3 4 5 6 8 7 | dvhopvadd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( `' ( 1st ` f ) e. T /\ ( I ` ( 2nd ` f ) ) e. E ) /\ ( ( 1st ` f ) e. T /\ ( 2nd ` f ) e. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( `' ( 1st ` f ) o. ( 1st ` f ) ) , ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) >. ) | 
						
							| 66 | 32 58 61 36 38 65 | syl122anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( `' ( 1st ` f ) o. ( 1st ` f ) ) , ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) >. ) | 
						
							| 67 |  | f1ococnv1 |  |-  ( ( 1st ` f ) : B -1-1-onto-> B -> ( `' ( 1st ` f ) o. ( 1st ` f ) ) = ( _I |` B ) ) | 
						
							| 68 | 42 67 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( `' ( 1st ` f ) o. ( 1st ` f ) ) = ( _I |` B ) ) | 
						
							| 69 | 25 7 9 10 | grplinv |  |-  ( ( D e. Grp /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) = .0. ) | 
						
							| 70 | 46 48 69 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) = .0. ) | 
						
							| 71 | 68 70 | opeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> <. ( `' ( 1st ` f ) o. ( 1st ` f ) ) , ( ( I ` ( 2nd ` f ) ) .+^ ( 2nd ` f ) ) >. = <. ( _I |` B ) , .0. >. ) | 
						
							| 72 | 66 71 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ <. ( 1st ` f ) , ( 2nd ` f ) >. ) = <. ( _I |` B ) , .0. >. ) | 
						
							| 73 | 64 72 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ f e. ( T X. E ) ) -> ( <. `' ( 1st ` f ) , ( I ` ( 2nd ` f ) ) >. .+ f ) = <. ( _I |` B ) , .0. >. ) | 
						
							| 74 | 13 14 16 17 31 56 63 73 | isgrpd |  |-  ( ( K e. HL /\ W e. H ) -> U e. Grp ) |