| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvhgrp.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | dvhgrp.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | dvhgrp.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 4 |  | dvhgrp.e |  |-  E = ( ( TEndo ` K ) ` W ) | 
						
							| 5 |  | dvhgrp.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 6 |  | dvhgrp.d |  |-  D = ( Scalar ` U ) | 
						
							| 7 |  | dvhgrp.p |  |-  .+^ = ( +g ` D ) | 
						
							| 8 |  | dvhgrp.a |  |-  .+ = ( +g ` U ) | 
						
							| 9 |  | dvhgrp.o |  |-  .0. = ( 0g ` D ) | 
						
							| 10 |  | dvhgrp.i |  |-  I = ( invg ` D ) | 
						
							| 11 |  | dvhlvec.m |  |-  .X. = ( .r ` D ) | 
						
							| 12 |  | dvhlvec.s |  |-  .x. = ( .s ` U ) | 
						
							| 13 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 14 | 2 3 4 5 13 | dvhvbase |  |-  ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( T X. E ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( K e. HL /\ W e. H ) -> ( T X. E ) = ( Base ` U ) ) | 
						
							| 16 | 8 | a1i |  |-  ( ( K e. HL /\ W e. H ) -> .+ = ( +g ` U ) ) | 
						
							| 17 | 6 | a1i |  |-  ( ( K e. HL /\ W e. H ) -> D = ( Scalar ` U ) ) | 
						
							| 18 | 12 | a1i |  |-  ( ( K e. HL /\ W e. H ) -> .x. = ( .s ` U ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 20 | 2 4 5 6 19 | dvhbase |  |-  ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E ) | 
						
							| 21 | 20 | eqcomd |  |-  ( ( K e. HL /\ W e. H ) -> E = ( Base ` D ) ) | 
						
							| 22 | 7 | a1i |  |-  ( ( K e. HL /\ W e. H ) -> .+^ = ( +g ` D ) ) | 
						
							| 23 | 11 | a1i |  |-  ( ( K e. HL /\ W e. H ) -> .X. = ( .r ` D ) ) | 
						
							| 24 |  | eqid |  |-  ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) | 
						
							| 25 | 2 24 5 6 | dvhsca |  |-  ( ( K e. HL /\ W e. H ) -> D = ( ( EDRing ` K ) ` W ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( K e. HL /\ W e. H ) -> ( 1r ` D ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) ) | 
						
							| 27 |  | eqid |  |-  ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) | 
						
							| 28 | 2 3 24 27 | erng1r |  |-  ( ( K e. HL /\ W e. H ) -> ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( _I |` T ) ) | 
						
							| 29 | 26 28 | eqtr2d |  |-  ( ( K e. HL /\ W e. H ) -> ( _I |` T ) = ( 1r ` D ) ) | 
						
							| 30 | 2 24 | erngdv |  |-  ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) | 
						
							| 31 | 25 30 | eqeltrd |  |-  ( ( K e. HL /\ W e. H ) -> D e. DivRing ) | 
						
							| 32 |  | drngring |  |-  ( D e. DivRing -> D e. Ring ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( K e. HL /\ W e. H ) -> D e. Ring ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 | dvhgrp |  |-  ( ( K e. HL /\ W e. H ) -> U e. Grp ) | 
						
							| 35 | 2 3 4 5 12 | dvhvscacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) ) ) -> ( s .x. t ) e. ( T X. E ) ) | 
						
							| 36 | 35 | 3impb |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. E /\ t e. ( T X. E ) ) -> ( s .x. t ) e. ( T X. E ) ) | 
						
							| 37 |  | simpl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 38 |  | simpr1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> s e. E ) | 
						
							| 39 |  | simpr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> t e. ( T X. E ) ) | 
						
							| 40 |  | xp1st |  |-  ( t e. ( T X. E ) -> ( 1st ` t ) e. T ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` t ) e. T ) | 
						
							| 42 |  | simpr3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> f e. ( T X. E ) ) | 
						
							| 43 |  | xp1st |  |-  ( f e. ( T X. E ) -> ( 1st ` f ) e. T ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` f ) e. T ) | 
						
							| 45 | 2 3 4 | tendospdi1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 1st ` t ) e. T /\ ( 1st ` f ) e. T ) ) -> ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) | 
						
							| 46 | 37 38 41 44 45 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) | 
						
							| 47 | 2 3 4 5 6 8 7 | dvhvadd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) = <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) | 
						
							| 48 | 47 | 3adantr1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) = <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .+ f ) ) = ( 1st ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) ) | 
						
							| 50 |  | fvex |  |-  ( 1st ` t ) e. _V | 
						
							| 51 |  | fvex |  |-  ( 1st ` f ) e. _V | 
						
							| 52 | 50 51 | coex |  |-  ( ( 1st ` t ) o. ( 1st ` f ) ) e. _V | 
						
							| 53 |  | ovex |  |-  ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. _V | 
						
							| 54 | 52 53 | op1st |  |-  ( 1st ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) = ( ( 1st ` t ) o. ( 1st ` f ) ) | 
						
							| 55 | 49 54 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .+ f ) ) = ( ( 1st ` t ) o. ( 1st ` f ) ) ) | 
						
							| 56 | 55 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( 1st ` ( t .+ f ) ) ) = ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) ) | 
						
							| 57 | 2 3 4 5 12 | dvhvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) ) ) -> ( s .x. t ) = <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) | 
						
							| 58 | 57 | 3adantr3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. t ) = <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. t ) ) = ( 1st ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) ) | 
						
							| 60 |  | fvex |  |-  ( s ` ( 1st ` t ) ) e. _V | 
						
							| 61 |  | vex |  |-  s e. _V | 
						
							| 62 |  | fvex |  |-  ( 2nd ` t ) e. _V | 
						
							| 63 | 61 62 | coex |  |-  ( s o. ( 2nd ` t ) ) e. _V | 
						
							| 64 | 60 63 | op1st |  |-  ( 1st ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) = ( s ` ( 1st ` t ) ) | 
						
							| 65 | 59 64 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. t ) ) = ( s ` ( 1st ` t ) ) ) | 
						
							| 66 | 2 3 4 5 12 | dvhvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) | 
						
							| 67 | 66 | 3adantr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) | 
						
							| 68 | 67 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) | 
						
							| 69 |  | fvex |  |-  ( s ` ( 1st ` f ) ) e. _V | 
						
							| 70 |  | fvex |  |-  ( 2nd ` f ) e. _V | 
						
							| 71 | 61 70 | coex |  |-  ( s o. ( 2nd ` f ) ) e. _V | 
						
							| 72 | 69 71 | op1st |  |-  ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s ` ( 1st ` f ) ) | 
						
							| 73 | 68 72 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( s ` ( 1st ` f ) ) ) | 
						
							| 74 | 65 73 | coeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) | 
						
							| 75 | 46 56 74 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( 1st ` ( t .+ f ) ) ) = ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) ) | 
						
							| 76 | 33 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> D e. Ring ) | 
						
							| 77 | 21 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> E = ( Base ` D ) ) | 
						
							| 78 | 38 77 | eleqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> s e. ( Base ` D ) ) | 
						
							| 79 |  | xp2nd |  |-  ( t e. ( T X. E ) -> ( 2nd ` t ) e. E ) | 
						
							| 80 | 39 79 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` t ) e. E ) | 
						
							| 81 | 80 77 | eleqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` t ) e. ( Base ` D ) ) | 
						
							| 82 |  | xp2nd |  |-  ( f e. ( T X. E ) -> ( 2nd ` f ) e. E ) | 
						
							| 83 | 42 82 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. E ) | 
						
							| 84 | 83 77 | eleqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) | 
						
							| 85 | 19 7 11 | ringdi |  |-  ( ( D e. Ring /\ ( s e. ( Base ` D ) /\ ( 2nd ` t ) e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) ) | 
						
							| 86 | 76 78 81 84 85 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) ) | 
						
							| 87 | 19 7 | ringacl |  |-  ( ( D e. Ring /\ ( 2nd ` t ) e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. ( Base ` D ) ) | 
						
							| 88 | 76 81 84 87 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. ( Base ` D ) ) | 
						
							| 89 | 88 77 | eleqtrrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. E ) | 
						
							| 90 | 2 3 4 5 6 11 | dvhmulr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. E ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) | 
						
							| 91 | 37 38 89 90 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) | 
						
							| 92 | 2 3 4 5 6 11 | dvhmulr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 2nd ` t ) e. E ) ) -> ( s .X. ( 2nd ` t ) ) = ( s o. ( 2nd ` t ) ) ) | 
						
							| 93 | 37 38 80 92 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` t ) ) = ( s o. ( 2nd ` t ) ) ) | 
						
							| 94 | 2 3 4 5 6 11 | dvhmulr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 2nd ` f ) e. E ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) | 
						
							| 95 | 37 38 83 94 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) | 
						
							| 96 | 93 95 | oveq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) | 
						
							| 97 | 86 91 96 | 3eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) | 
						
							| 98 | 48 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .+ f ) ) = ( 2nd ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) ) | 
						
							| 99 | 52 53 | op2nd |  |-  ( 2nd ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) = ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) | 
						
							| 100 | 98 99 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .+ f ) ) = ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) | 
						
							| 101 | 100 | coeq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( 2nd ` ( t .+ f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) | 
						
							| 102 | 58 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. t ) ) = ( 2nd ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) ) | 
						
							| 103 | 60 63 | op2nd |  |-  ( 2nd ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) = ( s o. ( 2nd ` t ) ) | 
						
							| 104 | 102 103 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. t ) ) = ( s o. ( 2nd ` t ) ) ) | 
						
							| 105 | 67 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) | 
						
							| 106 | 69 71 | op2nd |  |-  ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s o. ( 2nd ` f ) ) | 
						
							| 107 | 105 106 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( s o. ( 2nd ` f ) ) ) | 
						
							| 108 | 104 107 | oveq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) | 
						
							| 109 | 97 101 108 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( 2nd ` ( t .+ f ) ) ) = ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) ) | 
						
							| 110 | 75 109 | opeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) | 
						
							| 111 | 2 3 4 5 6 7 8 | dvhvaddcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) e. ( T X. E ) ) | 
						
							| 112 | 111 | 3adantr1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) e. ( T X. E ) ) | 
						
							| 113 | 2 3 4 5 12 | dvhvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( t .+ f ) e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. ) | 
						
							| 114 | 37 38 112 113 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. ) | 
						
							| 115 | 35 | 3adantr3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. t ) e. ( T X. E ) ) | 
						
							| 116 | 2 3 4 5 12 | dvhvscacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) | 
						
							| 117 | 116 | 3adantr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) | 
						
							| 118 | 2 3 4 5 6 8 7 | dvhvadd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( s .x. t ) e. ( T X. E ) /\ ( s .x. f ) e. ( T X. E ) ) ) -> ( ( s .x. t ) .+ ( s .x. f ) ) = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) | 
						
							| 119 | 37 115 117 118 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( s .x. t ) .+ ( s .x. f ) ) = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) | 
						
							| 120 | 110 114 119 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = ( ( s .x. t ) .+ ( s .x. f ) ) ) | 
						
							| 121 |  | simpl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 122 |  | simpr1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> s e. E ) | 
						
							| 123 |  | simpr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> t e. E ) | 
						
							| 124 |  | simpr3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> f e. ( T X. E ) ) | 
						
							| 125 | 124 43 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` f ) e. T ) | 
						
							| 126 |  | eqid |  |-  ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` ( ( EDRing ` K ) ` W ) ) | 
						
							| 127 | 2 3 4 24 126 | erngplus2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ ( 1st ` f ) e. T ) ) -> ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) | 
						
							| 128 | 121 122 123 125 127 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) | 
						
							| 129 | 25 | fveq2d |  |-  ( ( K e. HL /\ W e. H ) -> ( +g ` D ) = ( +g ` ( ( EDRing ` K ) ` W ) ) ) | 
						
							| 130 | 7 129 | eqtrid |  |-  ( ( K e. HL /\ W e. H ) -> .+^ = ( +g ` ( ( EDRing ` K ) ` W ) ) ) | 
						
							| 131 | 130 | oveqd |  |-  ( ( K e. HL /\ W e. H ) -> ( s .+^ t ) = ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ) | 
						
							| 132 | 131 | fveq1d |  |-  ( ( K e. HL /\ W e. H ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) ) | 
						
							| 134 | 66 | 3adantr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) | 
						
							| 135 | 134 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) | 
						
							| 136 | 135 72 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( s ` ( 1st ` f ) ) ) | 
						
							| 137 | 2 3 4 5 12 | dvhvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) = <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) | 
						
							| 138 | 137 | 3adantr1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) = <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) | 
						
							| 139 | 138 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .x. f ) ) = ( 1st ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) | 
						
							| 140 |  | fvex |  |-  ( t ` ( 1st ` f ) ) e. _V | 
						
							| 141 |  | vex |  |-  t e. _V | 
						
							| 142 | 141 70 | coex |  |-  ( t o. ( 2nd ` f ) ) e. _V | 
						
							| 143 | 140 142 | op1st |  |-  ( 1st ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = ( t ` ( 1st ` f ) ) | 
						
							| 144 | 139 143 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .x. f ) ) = ( t ` ( 1st ` f ) ) ) | 
						
							| 145 | 136 144 | coeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) | 
						
							| 146 | 128 133 145 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) ) | 
						
							| 147 | 33 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> D e. Ring ) | 
						
							| 148 | 21 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> E = ( Base ` D ) ) | 
						
							| 149 | 122 148 | eleqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> s e. ( Base ` D ) ) | 
						
							| 150 | 123 148 | eleqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> t e. ( Base ` D ) ) | 
						
							| 151 | 124 82 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. E ) | 
						
							| 152 | 151 148 | eleqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) | 
						
							| 153 | 19 7 11 | ringdir |  |-  ( ( D e. Ring /\ ( s e. ( Base ` D ) /\ t e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) ) | 
						
							| 154 | 147 149 150 152 153 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) ) | 
						
							| 155 | 19 7 | ringacl |  |-  ( ( D e. Ring /\ s e. ( Base ` D ) /\ t e. ( Base ` D ) ) -> ( s .+^ t ) e. ( Base ` D ) ) | 
						
							| 156 | 147 149 150 155 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .+^ t ) e. ( Base ` D ) ) | 
						
							| 157 | 156 148 | eleqtrrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .+^ t ) e. E ) | 
						
							| 158 | 2 3 4 5 6 11 | dvhmulr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( s .+^ t ) e. E /\ ( 2nd ` f ) e. E ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .+^ t ) o. ( 2nd ` f ) ) ) | 
						
							| 159 | 121 157 151 158 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .+^ t ) o. ( 2nd ` f ) ) ) | 
						
							| 160 | 121 122 151 94 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) | 
						
							| 161 | 2 3 4 5 6 11 | dvhmulr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ ( 2nd ` f ) e. E ) ) -> ( t .X. ( 2nd ` f ) ) = ( t o. ( 2nd ` f ) ) ) | 
						
							| 162 | 121 123 151 161 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .X. ( 2nd ` f ) ) = ( t o. ( 2nd ` f ) ) ) | 
						
							| 163 | 160 162 | oveq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) | 
						
							| 164 | 154 159 163 | 3eqtr3d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) o. ( 2nd ` f ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) | 
						
							| 165 | 134 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) | 
						
							| 166 | 165 106 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( s o. ( 2nd ` f ) ) ) | 
						
							| 167 | 138 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .x. f ) ) = ( 2nd ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) | 
						
							| 168 | 140 142 | op2nd |  |-  ( 2nd ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = ( t o. ( 2nd ` f ) ) | 
						
							| 169 | 167 168 | eqtrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .x. f ) ) = ( t o. ( 2nd ` f ) ) ) | 
						
							| 170 | 166 169 | oveq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) | 
						
							| 171 | 164 170 | eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) o. ( 2nd ` f ) ) = ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) ) | 
						
							| 172 | 146 171 | opeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) | 
						
							| 173 | 2 3 4 5 12 | dvhvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( s .+^ t ) e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. ) | 
						
							| 174 | 121 157 124 173 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. ) | 
						
							| 175 | 116 | 3adantr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) | 
						
							| 176 | 2 3 4 5 12 | dvhvscacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) e. ( T X. E ) ) | 
						
							| 177 | 176 | 3adantr1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) e. ( T X. E ) ) | 
						
							| 178 | 2 3 4 5 6 8 7 | dvhvadd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( s .x. f ) e. ( T X. E ) /\ ( t .x. f ) e. ( T X. E ) ) ) -> ( ( s .x. f ) .+ ( t .x. f ) ) = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) | 
						
							| 179 | 121 175 177 178 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .x. f ) .+ ( t .x. f ) ) = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) | 
						
							| 180 | 172 174 179 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = ( ( s .x. f ) .+ ( t .x. f ) ) ) | 
						
							| 181 | 2 3 4 | tendocoval |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E ) /\ ( 1st ` f ) e. T ) -> ( ( s o. t ) ` ( 1st ` f ) ) = ( s ` ( t ` ( 1st ` f ) ) ) ) | 
						
							| 182 | 121 122 123 125 181 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) ` ( 1st ` f ) ) = ( s ` ( t ` ( 1st ` f ) ) ) ) | 
						
							| 183 |  | coass |  |-  ( ( s o. t ) o. ( 2nd ` f ) ) = ( s o. ( t o. ( 2nd ` f ) ) ) | 
						
							| 184 | 183 | a1i |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) o. ( 2nd ` f ) ) = ( s o. ( t o. ( 2nd ` f ) ) ) ) | 
						
							| 185 | 182 184 | opeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) | 
						
							| 186 | 2 4 | tendococl |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. E /\ t e. E ) -> ( s o. t ) e. E ) | 
						
							| 187 | 121 122 123 186 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s o. t ) e. E ) | 
						
							| 188 | 2 3 4 5 12 | dvhvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( s o. t ) e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. ) | 
						
							| 189 | 121 187 124 188 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. ) | 
						
							| 190 | 2 3 4 | tendocl |  |-  ( ( ( K e. HL /\ W e. H ) /\ t e. E /\ ( 1st ` f ) e. T ) -> ( t ` ( 1st ` f ) ) e. T ) | 
						
							| 191 | 121 123 125 190 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t ` ( 1st ` f ) ) e. T ) | 
						
							| 192 | 2 4 | tendococl |  |-  ( ( ( K e. HL /\ W e. H ) /\ t e. E /\ ( 2nd ` f ) e. E ) -> ( t o. ( 2nd ` f ) ) e. E ) | 
						
							| 193 | 121 123 151 192 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t o. ( 2nd ` f ) ) e. E ) | 
						
							| 194 | 2 3 4 5 12 | dvhopvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( t ` ( 1st ` f ) ) e. T /\ ( t o. ( 2nd ` f ) ) e. E ) ) -> ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) | 
						
							| 195 | 121 122 191 193 194 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) | 
						
							| 196 | 185 189 195 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) | 
						
							| 197 | 2 3 4 5 6 11 | dvhmulr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E ) ) -> ( s .X. t ) = ( s o. t ) ) | 
						
							| 198 | 197 | 3adantr3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .X. t ) = ( s o. t ) ) | 
						
							| 199 | 198 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. t ) .x. f ) = ( ( s o. t ) .x. f ) ) | 
						
							| 200 | 138 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .x. f ) ) = ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) | 
						
							| 201 | 196 199 200 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. t ) .x. f ) = ( s .x. ( t .x. f ) ) ) | 
						
							| 202 |  | xp1st |  |-  ( s e. ( T X. E ) -> ( 1st ` s ) e. T ) | 
						
							| 203 | 202 | adantl |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( 1st ` s ) e. T ) | 
						
							| 204 |  | fvresi |  |-  ( ( 1st ` s ) e. T -> ( ( _I |` T ) ` ( 1st ` s ) ) = ( 1st ` s ) ) | 
						
							| 205 | 203 204 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) ` ( 1st ` s ) ) = ( 1st ` s ) ) | 
						
							| 206 |  | xp2nd |  |-  ( s e. ( T X. E ) -> ( 2nd ` s ) e. E ) | 
						
							| 207 | 2 3 4 | tendof |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( 2nd ` s ) e. E ) -> ( 2nd ` s ) : T --> T ) | 
						
							| 208 | 206 207 | sylan2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( 2nd ` s ) : T --> T ) | 
						
							| 209 |  | fcoi2 |  |-  ( ( 2nd ` s ) : T --> T -> ( ( _I |` T ) o. ( 2nd ` s ) ) = ( 2nd ` s ) ) | 
						
							| 210 | 208 209 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) o. ( 2nd ` s ) ) = ( 2nd ` s ) ) | 
						
							| 211 | 205 210 | opeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. = <. ( 1st ` s ) , ( 2nd ` s ) >. ) | 
						
							| 212 | 2 3 4 | tendoidcl |  |-  ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E ) | 
						
							| 213 | 212 | anim1i |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) e. E /\ s e. ( T X. E ) ) ) | 
						
							| 214 | 2 3 4 5 12 | dvhvsca |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` T ) e. E /\ s e. ( T X. E ) ) ) -> ( ( _I |` T ) .x. s ) = <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. ) | 
						
							| 215 | 213 214 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) .x. s ) = <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. ) | 
						
							| 216 |  | 1st2nd2 |  |-  ( s e. ( T X. E ) -> s = <. ( 1st ` s ) , ( 2nd ` s ) >. ) | 
						
							| 217 | 216 | adantl |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> s = <. ( 1st ` s ) , ( 2nd ` s ) >. ) | 
						
							| 218 | 211 215 217 | 3eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) .x. s ) = s ) | 
						
							| 219 | 15 16 17 18 21 22 23 29 33 34 36 120 180 201 218 | islmodd |  |-  ( ( K e. HL /\ W e. H ) -> U e. LMod ) | 
						
							| 220 | 6 | islvec |  |-  ( U e. LVec <-> ( U e. LMod /\ D e. DivRing ) ) | 
						
							| 221 | 219 31 220 | sylanbrc |  |-  ( ( K e. HL /\ W e. H ) -> U e. LVec ) |