Step |
Hyp |
Ref |
Expression |
1 |
|
dvhgrp.b |
|- B = ( Base ` K ) |
2 |
|
dvhgrp.h |
|- H = ( LHyp ` K ) |
3 |
|
dvhgrp.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
dvhgrp.e |
|- E = ( ( TEndo ` K ) ` W ) |
5 |
|
dvhgrp.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dvhgrp.d |
|- D = ( Scalar ` U ) |
7 |
|
dvhgrp.p |
|- .+^ = ( +g ` D ) |
8 |
|
dvhgrp.a |
|- .+ = ( +g ` U ) |
9 |
|
dvhgrp.o |
|- .0. = ( 0g ` D ) |
10 |
|
dvhgrp.i |
|- I = ( invg ` D ) |
11 |
|
dvhlvec.m |
|- .X. = ( .r ` D ) |
12 |
|
dvhlvec.s |
|- .x. = ( .s ` U ) |
13 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
14 |
2 3 4 5 13
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( T X. E ) ) |
15 |
14
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( T X. E ) = ( Base ` U ) ) |
16 |
8
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .+ = ( +g ` U ) ) |
17 |
6
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> D = ( Scalar ` U ) ) |
18 |
12
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .x. = ( .s ` U ) ) |
19 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
20 |
2 4 5 6 19
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E ) |
21 |
20
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> E = ( Base ` D ) ) |
22 |
7
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .+^ = ( +g ` D ) ) |
23 |
11
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .X. = ( .r ` D ) ) |
24 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
25 |
2 24 5 6
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> D = ( ( EDRing ` K ) ` W ) ) |
26 |
25
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` D ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) ) |
27 |
|
eqid |
|- ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) |
28 |
2 3 24 27
|
erng1r |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( _I |` T ) ) |
29 |
26 28
|
eqtr2d |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) = ( 1r ` D ) ) |
30 |
2 24
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
31 |
25 30
|
eqeltrd |
|- ( ( K e. HL /\ W e. H ) -> D e. DivRing ) |
32 |
|
drngring |
|- ( D e. DivRing -> D e. Ring ) |
33 |
31 32
|
syl |
|- ( ( K e. HL /\ W e. H ) -> D e. Ring ) |
34 |
1 2 3 4 5 6 7 8 9 10
|
dvhgrp |
|- ( ( K e. HL /\ W e. H ) -> U e. Grp ) |
35 |
2 3 4 5 12
|
dvhvscacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) ) ) -> ( s .x. t ) e. ( T X. E ) ) |
36 |
35
|
3impb |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. E /\ t e. ( T X. E ) ) -> ( s .x. t ) e. ( T X. E ) ) |
37 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( K e. HL /\ W e. H ) ) |
38 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> s e. E ) |
39 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> t e. ( T X. E ) ) |
40 |
|
xp1st |
|- ( t e. ( T X. E ) -> ( 1st ` t ) e. T ) |
41 |
39 40
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` t ) e. T ) |
42 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> f e. ( T X. E ) ) |
43 |
|
xp1st |
|- ( f e. ( T X. E ) -> ( 1st ` f ) e. T ) |
44 |
42 43
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` f ) e. T ) |
45 |
2 3 4
|
tendospdi1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 1st ` t ) e. T /\ ( 1st ` f ) e. T ) ) -> ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) |
46 |
37 38 41 44 45
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) |
47 |
2 3 4 5 6 8 7
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) = <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) |
48 |
47
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) = <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) |
49 |
48
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .+ f ) ) = ( 1st ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) ) |
50 |
|
fvex |
|- ( 1st ` t ) e. _V |
51 |
|
fvex |
|- ( 1st ` f ) e. _V |
52 |
50 51
|
coex |
|- ( ( 1st ` t ) o. ( 1st ` f ) ) e. _V |
53 |
|
ovex |
|- ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. _V |
54 |
52 53
|
op1st |
|- ( 1st ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) = ( ( 1st ` t ) o. ( 1st ` f ) ) |
55 |
49 54
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .+ f ) ) = ( ( 1st ` t ) o. ( 1st ` f ) ) ) |
56 |
55
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( 1st ` ( t .+ f ) ) ) = ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) ) |
57 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) ) ) -> ( s .x. t ) = <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) |
58 |
57
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. t ) = <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) |
59 |
58
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. t ) ) = ( 1st ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) ) |
60 |
|
fvex |
|- ( s ` ( 1st ` t ) ) e. _V |
61 |
|
vex |
|- s e. _V |
62 |
|
fvex |
|- ( 2nd ` t ) e. _V |
63 |
61 62
|
coex |
|- ( s o. ( 2nd ` t ) ) e. _V |
64 |
60 63
|
op1st |
|- ( 1st ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) = ( s ` ( 1st ` t ) ) |
65 |
59 64
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. t ) ) = ( s ` ( 1st ` t ) ) ) |
66 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
67 |
66
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
68 |
67
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
69 |
|
fvex |
|- ( s ` ( 1st ` f ) ) e. _V |
70 |
|
fvex |
|- ( 2nd ` f ) e. _V |
71 |
61 70
|
coex |
|- ( s o. ( 2nd ` f ) ) e. _V |
72 |
69 71
|
op1st |
|- ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s ` ( 1st ` f ) ) |
73 |
68 72
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( s ` ( 1st ` f ) ) ) |
74 |
65 73
|
coeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) |
75 |
46 56 74
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( 1st ` ( t .+ f ) ) ) = ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) ) |
76 |
33
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> D e. Ring ) |
77 |
21
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> E = ( Base ` D ) ) |
78 |
38 77
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> s e. ( Base ` D ) ) |
79 |
|
xp2nd |
|- ( t e. ( T X. E ) -> ( 2nd ` t ) e. E ) |
80 |
39 79
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` t ) e. E ) |
81 |
80 77
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` t ) e. ( Base ` D ) ) |
82 |
|
xp2nd |
|- ( f e. ( T X. E ) -> ( 2nd ` f ) e. E ) |
83 |
42 82
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. E ) |
84 |
83 77
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) |
85 |
19 7 11
|
ringdi |
|- ( ( D e. Ring /\ ( s e. ( Base ` D ) /\ ( 2nd ` t ) e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) ) |
86 |
76 78 81 84 85
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) ) |
87 |
19 7
|
ringacl |
|- ( ( D e. Ring /\ ( 2nd ` t ) e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. ( Base ` D ) ) |
88 |
76 81 84 87
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. ( Base ` D ) ) |
89 |
88 77
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. E ) |
90 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. E ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) |
91 |
37 38 89 90
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) |
92 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 2nd ` t ) e. E ) ) -> ( s .X. ( 2nd ` t ) ) = ( s o. ( 2nd ` t ) ) ) |
93 |
37 38 80 92
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` t ) ) = ( s o. ( 2nd ` t ) ) ) |
94 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 2nd ` f ) e. E ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) |
95 |
37 38 83 94
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) |
96 |
93 95
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) |
97 |
86 91 96
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) |
98 |
48
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .+ f ) ) = ( 2nd ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) ) |
99 |
52 53
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) = ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) |
100 |
98 99
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .+ f ) ) = ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) |
101 |
100
|
coeq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( 2nd ` ( t .+ f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) |
102 |
58
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. t ) ) = ( 2nd ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) ) |
103 |
60 63
|
op2nd |
|- ( 2nd ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) = ( s o. ( 2nd ` t ) ) |
104 |
102 103
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. t ) ) = ( s o. ( 2nd ` t ) ) ) |
105 |
67
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
106 |
69 71
|
op2nd |
|- ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s o. ( 2nd ` f ) ) |
107 |
105 106
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( s o. ( 2nd ` f ) ) ) |
108 |
104 107
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) |
109 |
97 101 108
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( 2nd ` ( t .+ f ) ) ) = ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) ) |
110 |
75 109
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) |
111 |
2 3 4 5 6 7 8
|
dvhvaddcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) e. ( T X. E ) ) |
112 |
111
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) e. ( T X. E ) ) |
113 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( t .+ f ) e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. ) |
114 |
37 38 112 113
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. ) |
115 |
35
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. t ) e. ( T X. E ) ) |
116 |
2 3 4 5 12
|
dvhvscacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) |
117 |
116
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) |
118 |
2 3 4 5 6 8 7
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .x. t ) e. ( T X. E ) /\ ( s .x. f ) e. ( T X. E ) ) ) -> ( ( s .x. t ) .+ ( s .x. f ) ) = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) |
119 |
37 115 117 118
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( s .x. t ) .+ ( s .x. f ) ) = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) |
120 |
110 114 119
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = ( ( s .x. t ) .+ ( s .x. f ) ) ) |
121 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( K e. HL /\ W e. H ) ) |
122 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> s e. E ) |
123 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> t e. E ) |
124 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> f e. ( T X. E ) ) |
125 |
124 43
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` f ) e. T ) |
126 |
|
eqid |
|- ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` ( ( EDRing ` K ) ` W ) ) |
127 |
2 3 4 24 126
|
erngplus2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ ( 1st ` f ) e. T ) ) -> ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) |
128 |
121 122 123 125 127
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) |
129 |
25
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` D ) = ( +g ` ( ( EDRing ` K ) ` W ) ) ) |
130 |
7 129
|
syl5eq |
|- ( ( K e. HL /\ W e. H ) -> .+^ = ( +g ` ( ( EDRing ` K ) ` W ) ) ) |
131 |
130
|
oveqd |
|- ( ( K e. HL /\ W e. H ) -> ( s .+^ t ) = ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ) |
132 |
131
|
fveq1d |
|- ( ( K e. HL /\ W e. H ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) ) |
133 |
132
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) ) |
134 |
66
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
135 |
134
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
136 |
135 72
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( s ` ( 1st ` f ) ) ) |
137 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) = <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) |
138 |
137
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) = <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) |
139 |
138
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .x. f ) ) = ( 1st ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
140 |
|
fvex |
|- ( t ` ( 1st ` f ) ) e. _V |
141 |
|
vex |
|- t e. _V |
142 |
141 70
|
coex |
|- ( t o. ( 2nd ` f ) ) e. _V |
143 |
140 142
|
op1st |
|- ( 1st ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = ( t ` ( 1st ` f ) ) |
144 |
139 143
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .x. f ) ) = ( t ` ( 1st ` f ) ) ) |
145 |
136 144
|
coeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) |
146 |
128 133 145
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) ) |
147 |
33
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> D e. Ring ) |
148 |
21
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> E = ( Base ` D ) ) |
149 |
122 148
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> s e. ( Base ` D ) ) |
150 |
123 148
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> t e. ( Base ` D ) ) |
151 |
124 82
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. E ) |
152 |
151 148
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) |
153 |
19 7 11
|
ringdir |
|- ( ( D e. Ring /\ ( s e. ( Base ` D ) /\ t e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) ) |
154 |
147 149 150 152 153
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) ) |
155 |
19 7
|
ringacl |
|- ( ( D e. Ring /\ s e. ( Base ` D ) /\ t e. ( Base ` D ) ) -> ( s .+^ t ) e. ( Base ` D ) ) |
156 |
147 149 150 155
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .+^ t ) e. ( Base ` D ) ) |
157 |
156 148
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .+^ t ) e. E ) |
158 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .+^ t ) e. E /\ ( 2nd ` f ) e. E ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .+^ t ) o. ( 2nd ` f ) ) ) |
159 |
121 157 151 158
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .+^ t ) o. ( 2nd ` f ) ) ) |
160 |
121 122 151 94
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) |
161 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ ( 2nd ` f ) e. E ) ) -> ( t .X. ( 2nd ` f ) ) = ( t o. ( 2nd ` f ) ) ) |
162 |
121 123 151 161
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .X. ( 2nd ` f ) ) = ( t o. ( 2nd ` f ) ) ) |
163 |
160 162
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) |
164 |
154 159 163
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) o. ( 2nd ` f ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) |
165 |
134
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
166 |
165 106
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( s o. ( 2nd ` f ) ) ) |
167 |
138
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .x. f ) ) = ( 2nd ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
168 |
140 142
|
op2nd |
|- ( 2nd ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = ( t o. ( 2nd ` f ) ) |
169 |
167 168
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .x. f ) ) = ( t o. ( 2nd ` f ) ) ) |
170 |
166 169
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) |
171 |
164 170
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) o. ( 2nd ` f ) ) = ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) ) |
172 |
146 171
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) |
173 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .+^ t ) e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. ) |
174 |
121 157 124 173
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. ) |
175 |
116
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) |
176 |
2 3 4 5 12
|
dvhvscacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) e. ( T X. E ) ) |
177 |
176
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) e. ( T X. E ) ) |
178 |
2 3 4 5 6 8 7
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .x. f ) e. ( T X. E ) /\ ( t .x. f ) e. ( T X. E ) ) ) -> ( ( s .x. f ) .+ ( t .x. f ) ) = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) |
179 |
121 175 177 178
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .x. f ) .+ ( t .x. f ) ) = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) |
180 |
172 174 179
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = ( ( s .x. f ) .+ ( t .x. f ) ) ) |
181 |
2 3 4
|
tendocoval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E ) /\ ( 1st ` f ) e. T ) -> ( ( s o. t ) ` ( 1st ` f ) ) = ( s ` ( t ` ( 1st ` f ) ) ) ) |
182 |
121 122 123 125 181
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) ` ( 1st ` f ) ) = ( s ` ( t ` ( 1st ` f ) ) ) ) |
183 |
|
coass |
|- ( ( s o. t ) o. ( 2nd ` f ) ) = ( s o. ( t o. ( 2nd ` f ) ) ) |
184 |
183
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) o. ( 2nd ` f ) ) = ( s o. ( t o. ( 2nd ` f ) ) ) ) |
185 |
182 184
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) |
186 |
2 4
|
tendococl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. E /\ t e. E ) -> ( s o. t ) e. E ) |
187 |
121 122 123 186
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s o. t ) e. E ) |
188 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s o. t ) e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. ) |
189 |
121 187 124 188
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. ) |
190 |
2 3 4
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ t e. E /\ ( 1st ` f ) e. T ) -> ( t ` ( 1st ` f ) ) e. T ) |
191 |
121 123 125 190
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t ` ( 1st ` f ) ) e. T ) |
192 |
2 4
|
tendococl |
|- ( ( ( K e. HL /\ W e. H ) /\ t e. E /\ ( 2nd ` f ) e. E ) -> ( t o. ( 2nd ` f ) ) e. E ) |
193 |
121 123 151 192
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t o. ( 2nd ` f ) ) e. E ) |
194 |
2 3 4 5 12
|
dvhopvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( t ` ( 1st ` f ) ) e. T /\ ( t o. ( 2nd ` f ) ) e. E ) ) -> ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) |
195 |
121 122 191 193 194
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) |
196 |
185 189 195
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
197 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E ) ) -> ( s .X. t ) = ( s o. t ) ) |
198 |
197
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .X. t ) = ( s o. t ) ) |
199 |
198
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. t ) .x. f ) = ( ( s o. t ) .x. f ) ) |
200 |
138
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .x. f ) ) = ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
201 |
196 199 200
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. t ) .x. f ) = ( s .x. ( t .x. f ) ) ) |
202 |
|
xp1st |
|- ( s e. ( T X. E ) -> ( 1st ` s ) e. T ) |
203 |
202
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( 1st ` s ) e. T ) |
204 |
|
fvresi |
|- ( ( 1st ` s ) e. T -> ( ( _I |` T ) ` ( 1st ` s ) ) = ( 1st ` s ) ) |
205 |
203 204
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) ` ( 1st ` s ) ) = ( 1st ` s ) ) |
206 |
|
xp2nd |
|- ( s e. ( T X. E ) -> ( 2nd ` s ) e. E ) |
207 |
2 3 4
|
tendof |
|- ( ( ( K e. HL /\ W e. H ) /\ ( 2nd ` s ) e. E ) -> ( 2nd ` s ) : T --> T ) |
208 |
206 207
|
sylan2 |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( 2nd ` s ) : T --> T ) |
209 |
|
fcoi2 |
|- ( ( 2nd ` s ) : T --> T -> ( ( _I |` T ) o. ( 2nd ` s ) ) = ( 2nd ` s ) ) |
210 |
208 209
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) o. ( 2nd ` s ) ) = ( 2nd ` s ) ) |
211 |
205 210
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. = <. ( 1st ` s ) , ( 2nd ` s ) >. ) |
212 |
2 3 4
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E ) |
213 |
212
|
anim1i |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) e. E /\ s e. ( T X. E ) ) ) |
214 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` T ) e. E /\ s e. ( T X. E ) ) ) -> ( ( _I |` T ) .x. s ) = <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. ) |
215 |
213 214
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) .x. s ) = <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. ) |
216 |
|
1st2nd2 |
|- ( s e. ( T X. E ) -> s = <. ( 1st ` s ) , ( 2nd ` s ) >. ) |
217 |
216
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> s = <. ( 1st ` s ) , ( 2nd ` s ) >. ) |
218 |
211 215 217
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) .x. s ) = s ) |
219 |
15 16 17 18 21 22 23 29 33 34 36 120 180 201 218
|
islmodd |
|- ( ( K e. HL /\ W e. H ) -> U e. LMod ) |
220 |
6
|
islvec |
|- ( U e. LVec <-> ( U e. LMod /\ D e. DivRing ) ) |
221 |
219 31 220
|
sylanbrc |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |