| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhgrp.b |
|- B = ( Base ` K ) |
| 2 |
|
dvhgrp.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dvhgrp.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
dvhgrp.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 5 |
|
dvhgrp.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 6 |
|
dvhgrp.d |
|- D = ( Scalar ` U ) |
| 7 |
|
dvhgrp.p |
|- .+^ = ( +g ` D ) |
| 8 |
|
dvhgrp.a |
|- .+ = ( +g ` U ) |
| 9 |
|
dvhgrp.o |
|- .0. = ( 0g ` D ) |
| 10 |
|
dvhgrp.i |
|- I = ( invg ` D ) |
| 11 |
|
dvhlvec.m |
|- .X. = ( .r ` D ) |
| 12 |
|
dvhlvec.s |
|- .x. = ( .s ` U ) |
| 13 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 14 |
2 3 4 5 13
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( T X. E ) ) |
| 15 |
14
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( T X. E ) = ( Base ` U ) ) |
| 16 |
8
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .+ = ( +g ` U ) ) |
| 17 |
6
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> D = ( Scalar ` U ) ) |
| 18 |
12
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .x. = ( .s ` U ) ) |
| 19 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 20 |
2 4 5 6 19
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = E ) |
| 21 |
20
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> E = ( Base ` D ) ) |
| 22 |
7
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .+^ = ( +g ` D ) ) |
| 23 |
11
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> .X. = ( .r ` D ) ) |
| 24 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
| 25 |
2 24 5 6
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> D = ( ( EDRing ` K ) ` W ) ) |
| 26 |
25
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` D ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) ) |
| 27 |
|
eqid |
|- ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) |
| 28 |
2 3 24 27
|
erng1r |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( _I |` T ) ) |
| 29 |
26 28
|
eqtr2d |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) = ( 1r ` D ) ) |
| 30 |
2 24
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
| 31 |
25 30
|
eqeltrd |
|- ( ( K e. HL /\ W e. H ) -> D e. DivRing ) |
| 32 |
|
drngring |
|- ( D e. DivRing -> D e. Ring ) |
| 33 |
31 32
|
syl |
|- ( ( K e. HL /\ W e. H ) -> D e. Ring ) |
| 34 |
1 2 3 4 5 6 7 8 9 10
|
dvhgrp |
|- ( ( K e. HL /\ W e. H ) -> U e. Grp ) |
| 35 |
2 3 4 5 12
|
dvhvscacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) ) ) -> ( s .x. t ) e. ( T X. E ) ) |
| 36 |
35
|
3impb |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. E /\ t e. ( T X. E ) ) -> ( s .x. t ) e. ( T X. E ) ) |
| 37 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 38 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> s e. E ) |
| 39 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> t e. ( T X. E ) ) |
| 40 |
|
xp1st |
|- ( t e. ( T X. E ) -> ( 1st ` t ) e. T ) |
| 41 |
39 40
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` t ) e. T ) |
| 42 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> f e. ( T X. E ) ) |
| 43 |
|
xp1st |
|- ( f e. ( T X. E ) -> ( 1st ` f ) e. T ) |
| 44 |
42 43
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` f ) e. T ) |
| 45 |
2 3 4
|
tendospdi1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 1st ` t ) e. T /\ ( 1st ` f ) e. T ) ) -> ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) |
| 46 |
37 38 41 44 45
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) |
| 47 |
2 3 4 5 6 8 7
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) = <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) |
| 48 |
47
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) = <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) |
| 49 |
48
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .+ f ) ) = ( 1st ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) ) |
| 50 |
|
fvex |
|- ( 1st ` t ) e. _V |
| 51 |
|
fvex |
|- ( 1st ` f ) e. _V |
| 52 |
50 51
|
coex |
|- ( ( 1st ` t ) o. ( 1st ` f ) ) e. _V |
| 53 |
|
ovex |
|- ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. _V |
| 54 |
52 53
|
op1st |
|- ( 1st ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) = ( ( 1st ` t ) o. ( 1st ` f ) ) |
| 55 |
49 54
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .+ f ) ) = ( ( 1st ` t ) o. ( 1st ` f ) ) ) |
| 56 |
55
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( 1st ` ( t .+ f ) ) ) = ( s ` ( ( 1st ` t ) o. ( 1st ` f ) ) ) ) |
| 57 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) ) ) -> ( s .x. t ) = <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) |
| 58 |
57
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. t ) = <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) |
| 59 |
58
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. t ) ) = ( 1st ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) ) |
| 60 |
|
fvex |
|- ( s ` ( 1st ` t ) ) e. _V |
| 61 |
|
vex |
|- s e. _V |
| 62 |
|
fvex |
|- ( 2nd ` t ) e. _V |
| 63 |
61 62
|
coex |
|- ( s o. ( 2nd ` t ) ) e. _V |
| 64 |
60 63
|
op1st |
|- ( 1st ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) = ( s ` ( 1st ` t ) ) |
| 65 |
59 64
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. t ) ) = ( s ` ( 1st ` t ) ) ) |
| 66 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
| 67 |
66
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
| 68 |
67
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
| 69 |
|
fvex |
|- ( s ` ( 1st ` f ) ) e. _V |
| 70 |
|
fvex |
|- ( 2nd ` f ) e. _V |
| 71 |
61 70
|
coex |
|- ( s o. ( 2nd ` f ) ) e. _V |
| 72 |
69 71
|
op1st |
|- ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s ` ( 1st ` f ) ) |
| 73 |
68 72
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( s ` ( 1st ` f ) ) ) |
| 74 |
65 73
|
coeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) = ( ( s ` ( 1st ` t ) ) o. ( s ` ( 1st ` f ) ) ) ) |
| 75 |
46 56 74
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s ` ( 1st ` ( t .+ f ) ) ) = ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) ) |
| 76 |
33
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> D e. Ring ) |
| 77 |
21
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> E = ( Base ` D ) ) |
| 78 |
38 77
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> s e. ( Base ` D ) ) |
| 79 |
|
xp2nd |
|- ( t e. ( T X. E ) -> ( 2nd ` t ) e. E ) |
| 80 |
39 79
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` t ) e. E ) |
| 81 |
80 77
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` t ) e. ( Base ` D ) ) |
| 82 |
|
xp2nd |
|- ( f e. ( T X. E ) -> ( 2nd ` f ) e. E ) |
| 83 |
42 82
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. E ) |
| 84 |
83 77
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) |
| 85 |
19 7 11
|
ringdi |
|- ( ( D e. Ring /\ ( s e. ( Base ` D ) /\ ( 2nd ` t ) e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) ) |
| 86 |
76 78 81 84 85
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) ) |
| 87 |
19 7
|
ringacl |
|- ( ( D e. Ring /\ ( 2nd ` t ) e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. ( Base ` D ) ) |
| 88 |
76 81 84 87
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. ( Base ` D ) ) |
| 89 |
88 77
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. E ) |
| 90 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) e. E ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) |
| 91 |
37 38 89 90
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) |
| 92 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 2nd ` t ) e. E ) ) -> ( s .X. ( 2nd ` t ) ) = ( s o. ( 2nd ` t ) ) ) |
| 93 |
37 38 80 92
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` t ) ) = ( s o. ( 2nd ` t ) ) ) |
| 94 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( 2nd ` f ) e. E ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) |
| 95 |
37 38 83 94
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) |
| 96 |
93 95
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( s .X. ( 2nd ` t ) ) .+^ ( s .X. ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) |
| 97 |
86 91 96
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) |
| 98 |
48
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .+ f ) ) = ( 2nd ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) ) |
| 99 |
52 53
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` t ) o. ( 1st ` f ) ) , ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) >. ) = ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) |
| 100 |
98 99
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .+ f ) ) = ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) |
| 101 |
100
|
coeq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( 2nd ` ( t .+ f ) ) ) = ( s o. ( ( 2nd ` t ) .+^ ( 2nd ` f ) ) ) ) |
| 102 |
58
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. t ) ) = ( 2nd ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) ) |
| 103 |
60 63
|
op2nd |
|- ( 2nd ` <. ( s ` ( 1st ` t ) ) , ( s o. ( 2nd ` t ) ) >. ) = ( s o. ( 2nd ` t ) ) |
| 104 |
102 103
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. t ) ) = ( s o. ( 2nd ` t ) ) ) |
| 105 |
67
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
| 106 |
69 71
|
op2nd |
|- ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s o. ( 2nd ` f ) ) |
| 107 |
105 106
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( s o. ( 2nd ` f ) ) ) |
| 108 |
104 107
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) = ( ( s o. ( 2nd ` t ) ) .+^ ( s o. ( 2nd ` f ) ) ) ) |
| 109 |
97 101 108
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s o. ( 2nd ` ( t .+ f ) ) ) = ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) ) |
| 110 |
75 109
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) |
| 111 |
2 3 4 5 6 7 8
|
dvhvaddcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) e. ( T X. E ) ) |
| 112 |
111
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( t .+ f ) e. ( T X. E ) ) |
| 113 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( t .+ f ) e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. ) |
| 114 |
37 38 112 113
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = <. ( s ` ( 1st ` ( t .+ f ) ) ) , ( s o. ( 2nd ` ( t .+ f ) ) ) >. ) |
| 115 |
35
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. t ) e. ( T X. E ) ) |
| 116 |
2 3 4 5 12
|
dvhvscacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) |
| 117 |
116
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) |
| 118 |
2 3 4 5 6 8 7
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .x. t ) e. ( T X. E ) /\ ( s .x. f ) e. ( T X. E ) ) ) -> ( ( s .x. t ) .+ ( s .x. f ) ) = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) |
| 119 |
37 115 117 118
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( ( s .x. t ) .+ ( s .x. f ) ) = <. ( ( 1st ` ( s .x. t ) ) o. ( 1st ` ( s .x. f ) ) ) , ( ( 2nd ` ( s .x. t ) ) .+^ ( 2nd ` ( s .x. f ) ) ) >. ) |
| 120 |
110 114 119
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. ( T X. E ) /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .+ f ) ) = ( ( s .x. t ) .+ ( s .x. f ) ) ) |
| 121 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 122 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> s e. E ) |
| 123 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> t e. E ) |
| 124 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> f e. ( T X. E ) ) |
| 125 |
124 43
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` f ) e. T ) |
| 126 |
|
eqid |
|- ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` ( ( EDRing ` K ) ` W ) ) |
| 127 |
2 3 4 24 126
|
erngplus2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ ( 1st ` f ) e. T ) ) -> ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) |
| 128 |
121 122 123 125 127
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) |
| 129 |
25
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` D ) = ( +g ` ( ( EDRing ` K ) ` W ) ) ) |
| 130 |
7 129
|
eqtrid |
|- ( ( K e. HL /\ W e. H ) -> .+^ = ( +g ` ( ( EDRing ` K ) ` W ) ) ) |
| 131 |
130
|
oveqd |
|- ( ( K e. HL /\ W e. H ) -> ( s .+^ t ) = ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ) |
| 132 |
131
|
fveq1d |
|- ( ( K e. HL /\ W e. H ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) ) |
| 133 |
132
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( s ( +g ` ( ( EDRing ` K ) ` W ) ) t ) ` ( 1st ` f ) ) ) |
| 134 |
66
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
| 135 |
134
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( 1st ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
| 136 |
135 72
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( s .x. f ) ) = ( s ` ( 1st ` f ) ) ) |
| 137 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) = <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) |
| 138 |
137
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) = <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) |
| 139 |
138
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .x. f ) ) = ( 1st ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
| 140 |
|
fvex |
|- ( t ` ( 1st ` f ) ) e. _V |
| 141 |
|
vex |
|- t e. _V |
| 142 |
141 70
|
coex |
|- ( t o. ( 2nd ` f ) ) e. _V |
| 143 |
140 142
|
op1st |
|- ( 1st ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = ( t ` ( 1st ` f ) ) |
| 144 |
139 143
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 1st ` ( t .x. f ) ) = ( t ` ( 1st ` f ) ) ) |
| 145 |
136 144
|
coeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) = ( ( s ` ( 1st ` f ) ) o. ( t ` ( 1st ` f ) ) ) ) |
| 146 |
128 133 145
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) ` ( 1st ` f ) ) = ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) ) |
| 147 |
33
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> D e. Ring ) |
| 148 |
21
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> E = ( Base ` D ) ) |
| 149 |
122 148
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> s e. ( Base ` D ) ) |
| 150 |
123 148
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> t e. ( Base ` D ) ) |
| 151 |
124 82
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. E ) |
| 152 |
151 148
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` f ) e. ( Base ` D ) ) |
| 153 |
19 7 11
|
ringdir |
|- ( ( D e. Ring /\ ( s e. ( Base ` D ) /\ t e. ( Base ` D ) /\ ( 2nd ` f ) e. ( Base ` D ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) ) |
| 154 |
147 149 150 152 153
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) ) |
| 155 |
19 7
|
ringacl |
|- ( ( D e. Ring /\ s e. ( Base ` D ) /\ t e. ( Base ` D ) ) -> ( s .+^ t ) e. ( Base ` D ) ) |
| 156 |
147 149 150 155
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .+^ t ) e. ( Base ` D ) ) |
| 157 |
156 148
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .+^ t ) e. E ) |
| 158 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .+^ t ) e. E /\ ( 2nd ` f ) e. E ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .+^ t ) o. ( 2nd ` f ) ) ) |
| 159 |
121 157 151 158
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .X. ( 2nd ` f ) ) = ( ( s .+^ t ) o. ( 2nd ` f ) ) ) |
| 160 |
121 122 151 94
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .X. ( 2nd ` f ) ) = ( s o. ( 2nd ` f ) ) ) |
| 161 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ ( 2nd ` f ) e. E ) ) -> ( t .X. ( 2nd ` f ) ) = ( t o. ( 2nd ` f ) ) ) |
| 162 |
121 123 151 161
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .X. ( 2nd ` f ) ) = ( t o. ( 2nd ` f ) ) ) |
| 163 |
160 162
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. ( 2nd ` f ) ) .+^ ( t .X. ( 2nd ` f ) ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) |
| 164 |
154 159 163
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) o. ( 2nd ` f ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) |
| 165 |
134
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( 2nd ` <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
| 166 |
165 106
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( s .x. f ) ) = ( s o. ( 2nd ` f ) ) ) |
| 167 |
138
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .x. f ) ) = ( 2nd ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
| 168 |
140 142
|
op2nd |
|- ( 2nd ` <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = ( t o. ( 2nd ` f ) ) |
| 169 |
167 168
|
eqtrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( 2nd ` ( t .x. f ) ) = ( t o. ( 2nd ` f ) ) ) |
| 170 |
166 169
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) = ( ( s o. ( 2nd ` f ) ) .+^ ( t o. ( 2nd ` f ) ) ) ) |
| 171 |
164 170
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) o. ( 2nd ` f ) ) = ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) ) |
| 172 |
146 171
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) |
| 173 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .+^ t ) e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. ) |
| 174 |
121 157 124 173
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = <. ( ( s .+^ t ) ` ( 1st ` f ) ) , ( ( s .+^ t ) o. ( 2nd ` f ) ) >. ) |
| 175 |
116
|
3adantr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. f ) e. ( T X. E ) ) |
| 176 |
2 3 4 5 12
|
dvhvscacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) e. ( T X. E ) ) |
| 177 |
176
|
3adantr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t .x. f ) e. ( T X. E ) ) |
| 178 |
2 3 4 5 6 8 7
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s .x. f ) e. ( T X. E ) /\ ( t .x. f ) e. ( T X. E ) ) ) -> ( ( s .x. f ) .+ ( t .x. f ) ) = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) |
| 179 |
121 175 177 178
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .x. f ) .+ ( t .x. f ) ) = <. ( ( 1st ` ( s .x. f ) ) o. ( 1st ` ( t .x. f ) ) ) , ( ( 2nd ` ( s .x. f ) ) .+^ ( 2nd ` ( t .x. f ) ) ) >. ) |
| 180 |
172 174 179
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .+^ t ) .x. f ) = ( ( s .x. f ) .+ ( t .x. f ) ) ) |
| 181 |
2 3 4
|
tendocoval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E ) /\ ( 1st ` f ) e. T ) -> ( ( s o. t ) ` ( 1st ` f ) ) = ( s ` ( t ` ( 1st ` f ) ) ) ) |
| 182 |
121 122 123 125 181
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) ` ( 1st ` f ) ) = ( s ` ( t ` ( 1st ` f ) ) ) ) |
| 183 |
|
coass |
|- ( ( s o. t ) o. ( 2nd ` f ) ) = ( s o. ( t o. ( 2nd ` f ) ) ) |
| 184 |
183
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) o. ( 2nd ` f ) ) = ( s o. ( t o. ( 2nd ` f ) ) ) ) |
| 185 |
182 184
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) |
| 186 |
2 4
|
tendococl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. E /\ t e. E ) -> ( s o. t ) e. E ) |
| 187 |
121 122 123 186
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s o. t ) e. E ) |
| 188 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( s o. t ) e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. ) |
| 189 |
121 187 124 188
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = <. ( ( s o. t ) ` ( 1st ` f ) ) , ( ( s o. t ) o. ( 2nd ` f ) ) >. ) |
| 190 |
2 3 4
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ t e. E /\ ( 1st ` f ) e. T ) -> ( t ` ( 1st ` f ) ) e. T ) |
| 191 |
121 123 125 190
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t ` ( 1st ` f ) ) e. T ) |
| 192 |
2 4
|
tendococl |
|- ( ( ( K e. HL /\ W e. H ) /\ t e. E /\ ( 2nd ` f ) e. E ) -> ( t o. ( 2nd ` f ) ) e. E ) |
| 193 |
121 123 151 192
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( t o. ( 2nd ` f ) ) e. E ) |
| 194 |
2 3 4 5 12
|
dvhopvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ ( t ` ( 1st ` f ) ) e. T /\ ( t o. ( 2nd ` f ) ) e. E ) ) -> ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) |
| 195 |
121 122 191 193 194
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) = <. ( s ` ( t ` ( 1st ` f ) ) ) , ( s o. ( t o. ( 2nd ` f ) ) ) >. ) |
| 196 |
185 189 195
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s o. t ) .x. f ) = ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
| 197 |
2 3 4 5 6 11
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E ) ) -> ( s .X. t ) = ( s o. t ) ) |
| 198 |
197
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .X. t ) = ( s o. t ) ) |
| 199 |
198
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. t ) .x. f ) = ( ( s o. t ) .x. f ) ) |
| 200 |
138
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( s .x. ( t .x. f ) ) = ( s .x. <. ( t ` ( 1st ` f ) ) , ( t o. ( 2nd ` f ) ) >. ) ) |
| 201 |
196 199 200
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( s e. E /\ t e. E /\ f e. ( T X. E ) ) ) -> ( ( s .X. t ) .x. f ) = ( s .x. ( t .x. f ) ) ) |
| 202 |
|
xp1st |
|- ( s e. ( T X. E ) -> ( 1st ` s ) e. T ) |
| 203 |
202
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( 1st ` s ) e. T ) |
| 204 |
|
fvresi |
|- ( ( 1st ` s ) e. T -> ( ( _I |` T ) ` ( 1st ` s ) ) = ( 1st ` s ) ) |
| 205 |
203 204
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) ` ( 1st ` s ) ) = ( 1st ` s ) ) |
| 206 |
|
xp2nd |
|- ( s e. ( T X. E ) -> ( 2nd ` s ) e. E ) |
| 207 |
2 3 4
|
tendof |
|- ( ( ( K e. HL /\ W e. H ) /\ ( 2nd ` s ) e. E ) -> ( 2nd ` s ) : T --> T ) |
| 208 |
206 207
|
sylan2 |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( 2nd ` s ) : T --> T ) |
| 209 |
|
fcoi2 |
|- ( ( 2nd ` s ) : T --> T -> ( ( _I |` T ) o. ( 2nd ` s ) ) = ( 2nd ` s ) ) |
| 210 |
208 209
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) o. ( 2nd ` s ) ) = ( 2nd ` s ) ) |
| 211 |
205 210
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. = <. ( 1st ` s ) , ( 2nd ` s ) >. ) |
| 212 |
2 3 4
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E ) |
| 213 |
212
|
anim1i |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) e. E /\ s e. ( T X. E ) ) ) |
| 214 |
2 3 4 5 12
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` T ) e. E /\ s e. ( T X. E ) ) ) -> ( ( _I |` T ) .x. s ) = <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. ) |
| 215 |
213 214
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) .x. s ) = <. ( ( _I |` T ) ` ( 1st ` s ) ) , ( ( _I |` T ) o. ( 2nd ` s ) ) >. ) |
| 216 |
|
1st2nd2 |
|- ( s e. ( T X. E ) -> s = <. ( 1st ` s ) , ( 2nd ` s ) >. ) |
| 217 |
216
|
adantl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> s = <. ( 1st ` s ) , ( 2nd ` s ) >. ) |
| 218 |
211 215 217
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( T X. E ) ) -> ( ( _I |` T ) .x. s ) = s ) |
| 219 |
15 16 17 18 21 22 23 29 33 34 36 120 180 201 218
|
islmodd |
|- ( ( K e. HL /\ W e. H ) -> U e. LMod ) |
| 220 |
6
|
islvec |
|- ( U e. LVec <-> ( U e. LMod /\ D e. DivRing ) ) |
| 221 |
219 31 220
|
sylanbrc |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |