| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhfvsca.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvhfvsca.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
dvhfvsca.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 4 |
|
dvhfvsca.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dvhfvsca.s |
|- .x. = ( .s ` U ) |
| 6 |
|
simpl |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> ( K e. V /\ W e. H ) ) |
| 7 |
|
simpr1 |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> R e. E ) |
| 8 |
|
simpr2 |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> F e. T ) |
| 9 |
|
simpr3 |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> X e. E ) |
| 10 |
|
opelxpi |
|- ( ( F e. T /\ X e. E ) -> <. F , X >. e. ( T X. E ) ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> <. F , X >. e. ( T X. E ) ) |
| 12 |
1 2 3 4 5
|
dvhvsca |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ <. F , X >. e. ( T X. E ) ) ) -> ( R .x. <. F , X >. ) = <. ( R ` ( 1st ` <. F , X >. ) ) , ( R o. ( 2nd ` <. F , X >. ) ) >. ) |
| 13 |
6 7 11 12
|
syl12anc |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> ( R .x. <. F , X >. ) = <. ( R ` ( 1st ` <. F , X >. ) ) , ( R o. ( 2nd ` <. F , X >. ) ) >. ) |
| 14 |
|
op1stg |
|- ( ( F e. T /\ X e. E ) -> ( 1st ` <. F , X >. ) = F ) |
| 15 |
8 9 14
|
syl2anc |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> ( 1st ` <. F , X >. ) = F ) |
| 16 |
15
|
fveq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> ( R ` ( 1st ` <. F , X >. ) ) = ( R ` F ) ) |
| 17 |
|
op2ndg |
|- ( ( F e. T /\ X e. E ) -> ( 2nd ` <. F , X >. ) = X ) |
| 18 |
8 9 17
|
syl2anc |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> ( 2nd ` <. F , X >. ) = X ) |
| 19 |
18
|
coeq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> ( R o. ( 2nd ` <. F , X >. ) ) = ( R o. X ) ) |
| 20 |
16 19
|
opeq12d |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> <. ( R ` ( 1st ` <. F , X >. ) ) , ( R o. ( 2nd ` <. F , X >. ) ) >. = <. ( R ` F ) , ( R o. X ) >. ) |
| 21 |
13 20
|
eqtrd |
|- ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. T /\ X e. E ) ) -> ( R .x. <. F , X >. ) = <. ( R ` F ) , ( R o. X ) >. ) |