Step |
Hyp |
Ref |
Expression |
1 |
|
erngset.h |
|- H = ( LHyp ` K ) |
2 |
|
erngset.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
erngset.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
erngset.d |
|- D = ( ( EDRing ` K ) ` W ) |
5 |
|
erng.p |
|- .+ = ( +g ` D ) |
6 |
1 2 3 4 5
|
erngplus |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E ) ) -> ( U .+ V ) = ( f e. T |-> ( ( U ` f ) o. ( V ` f ) ) ) ) |
7 |
6
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ F e. T ) ) -> ( U .+ V ) = ( f e. T |-> ( ( U ` f ) o. ( V ` f ) ) ) ) |
8 |
|
fveq2 |
|- ( f = F -> ( U ` f ) = ( U ` F ) ) |
9 |
|
fveq2 |
|- ( f = F -> ( V ` f ) = ( V ` F ) ) |
10 |
8 9
|
coeq12d |
|- ( f = F -> ( ( U ` f ) o. ( V ` f ) ) = ( ( U ` F ) o. ( V ` F ) ) ) |
11 |
10
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ F e. T ) ) /\ f = F ) -> ( ( U ` f ) o. ( V ` f ) ) = ( ( U ` F ) o. ( V ` F ) ) ) |
12 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ F e. T ) ) -> F e. T ) |
13 |
|
fvex |
|- ( U ` F ) e. _V |
14 |
|
fvex |
|- ( V ` F ) e. _V |
15 |
13 14
|
coex |
|- ( ( U ` F ) o. ( V ` F ) ) e. _V |
16 |
15
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ F e. T ) ) -> ( ( U ` F ) o. ( V ` F ) ) e. _V ) |
17 |
7 11 12 16
|
fvmptd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. E /\ V e. E /\ F e. T ) ) -> ( ( U .+ V ) ` F ) = ( ( U ` F ) o. ( V ` F ) ) ) |