| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erngset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
erngset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
erngset.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
erngset.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
erng.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 6 |
1 2 3 4 5
|
erngplus |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑈 + 𝑉 ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) ) ) |
| 7 |
6
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝑈 + 𝑉 ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑈 ‘ 𝑓 ) = ( 𝑈 ‘ 𝐹 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑉 ‘ 𝑓 ) = ( 𝑉 ‘ 𝐹 ) ) |
| 10 |
8 9
|
coeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
| 11 |
10
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
| 12 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
| 13 |
|
fvex |
⊢ ( 𝑈 ‘ 𝐹 ) ∈ V |
| 14 |
|
fvex |
⊢ ( 𝑉 ‘ 𝐹 ) ∈ V |
| 15 |
13 14
|
coex |
⊢ ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∈ V |
| 16 |
15
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∈ V ) |
| 17 |
7 11 12 16
|
fvmptd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( ( 𝑈 + 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |