| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhgrp.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dvhgrp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dvhgrp.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dvhgrp.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dvhgrp.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dvhgrp.d |
⊢ 𝐷 = ( Scalar ‘ 𝑈 ) |
| 7 |
|
dvhgrp.p |
⊢ ⨣ = ( +g ‘ 𝐷 ) |
| 8 |
|
dvhgrp.a |
⊢ + = ( +g ‘ 𝑈 ) |
| 9 |
|
dvhgrp.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
| 10 |
|
dvhgrp.i |
⊢ 𝐼 = ( invg ‘ 𝐷 ) |
| 11 |
|
dvhlvec.m |
⊢ × = ( .r ‘ 𝐷 ) |
| 12 |
|
dvhlvec.s |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 14 |
2 3 4 5 13
|
dvhvbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝑈 ) = ( 𝑇 × 𝐸 ) ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑇 × 𝐸 ) = ( Base ‘ 𝑈 ) ) |
| 16 |
8
|
a1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → + = ( +g ‘ 𝑈 ) ) |
| 17 |
6
|
a1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 = ( Scalar ‘ 𝑈 ) ) |
| 18 |
12
|
a1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → · = ( ·𝑠 ‘ 𝑈 ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 20 |
2 4 5 6 19
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐷 ) = 𝐸 ) |
| 21 |
20
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
| 22 |
7
|
a1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ⨣ = ( +g ‘ 𝐷 ) ) |
| 23 |
11
|
a1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → × = ( .r ‘ 𝐷 ) ) |
| 24 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
| 25 |
2 24 5 6
|
dvhsca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ 𝐷 ) = ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 27 |
|
eqid |
⊢ ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 28 |
2 3 24 27
|
erng1r |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 1r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( I ↾ 𝑇 ) ) |
| 29 |
26 28
|
eqtr2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) = ( 1r ‘ 𝐷 ) ) |
| 30 |
2 24
|
erngdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ∈ DivRing ) |
| 31 |
25 30
|
eqeltrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ DivRing ) |
| 32 |
|
drngring |
⊢ ( 𝐷 ∈ DivRing → 𝐷 ∈ Ring ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ Ring ) |
| 34 |
1 2 3 4 5 6 7 8 9 10
|
dvhgrp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ Grp ) |
| 35 |
2 3 4 5 12
|
dvhvscacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑡 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 36 |
35
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝑠 · 𝑡 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 37 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 38 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑠 ∈ 𝐸 ) |
| 39 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑡 ∈ ( 𝑇 × 𝐸 ) ) |
| 40 |
|
xp1st |
⊢ ( 𝑡 ∈ ( 𝑇 × 𝐸 ) → ( 1st ‘ 𝑡 ) ∈ 𝑇 ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ 𝑡 ) ∈ 𝑇 ) |
| 42 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑓 ∈ ( 𝑇 × 𝐸 ) ) |
| 43 |
|
xp1st |
⊢ ( 𝑓 ∈ ( 𝑇 × 𝐸 ) → ( 1st ‘ 𝑓 ) ∈ 𝑇 ) |
| 44 |
42 43
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ 𝑓 ) ∈ 𝑇 ) |
| 45 |
2 3 4
|
tendospdi1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 1st ‘ 𝑡 ) ∈ 𝑇 ∧ ( 1st ‘ 𝑓 ) ∈ 𝑇 ) ) → ( 𝑠 ‘ ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) ) = ( ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) ∘ ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 46 |
37 38 41 44 45
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ‘ ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) ) = ( ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) ∘ ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 47 |
2 3 4 5 6 8 7
|
dvhvadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 + 𝑓 ) = 〈 ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) , ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 48 |
47
|
3adantr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 + 𝑓 ) = 〈 ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) , ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 49 |
48
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑡 + 𝑓 ) ) = ( 1st ‘ 〈 ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) , ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 50 |
|
fvex |
⊢ ( 1st ‘ 𝑡 ) ∈ V |
| 51 |
|
fvex |
⊢ ( 1st ‘ 𝑓 ) ∈ V |
| 52 |
50 51
|
coex |
⊢ ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) ∈ V |
| 53 |
|
ovex |
⊢ ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ∈ V |
| 54 |
52 53
|
op1st |
⊢ ( 1st ‘ 〈 ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) , ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) |
| 55 |
49 54
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑡 + 𝑓 ) ) = ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ‘ ( 1st ‘ ( 𝑡 + 𝑓 ) ) ) = ( 𝑠 ‘ ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) ) ) |
| 57 |
2 3 4 5 12
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑡 ) = 〈 ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) 〉 ) |
| 58 |
57
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑡 ) = 〈 ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) 〉 ) |
| 59 |
58
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑠 · 𝑡 ) ) = ( 1st ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) 〉 ) ) |
| 60 |
|
fvex |
⊢ ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) ∈ V |
| 61 |
|
vex |
⊢ 𝑠 ∈ V |
| 62 |
|
fvex |
⊢ ( 2nd ‘ 𝑡 ) ∈ V |
| 63 |
61 62
|
coex |
⊢ ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) ∈ V |
| 64 |
60 63
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) 〉 ) = ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) |
| 65 |
59 64
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑠 · 𝑡 ) ) = ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) ) |
| 66 |
2 3 4 5 12
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑓 ) = 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 67 |
66
|
3adantr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑓 ) = 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 68 |
67
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑠 · 𝑓 ) ) = ( 1st ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 69 |
|
fvex |
⊢ ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ∈ V |
| 70 |
|
fvex |
⊢ ( 2nd ‘ 𝑓 ) ∈ V |
| 71 |
61 70
|
coex |
⊢ ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ∈ V |
| 72 |
69 71
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) |
| 73 |
68 72
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑠 · 𝑓 ) ) = ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ) |
| 74 |
65 73
|
coeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 1st ‘ ( 𝑠 · 𝑡 ) ) ∘ ( 1st ‘ ( 𝑠 · 𝑓 ) ) ) = ( ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) ∘ ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 75 |
46 56 74
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ‘ ( 1st ‘ ( 𝑡 + 𝑓 ) ) ) = ( ( 1st ‘ ( 𝑠 · 𝑡 ) ) ∘ ( 1st ‘ ( 𝑠 · 𝑓 ) ) ) ) |
| 76 |
33
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝐷 ∈ Ring ) |
| 77 |
21
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
| 78 |
38 77
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑠 ∈ ( Base ‘ 𝐷 ) ) |
| 79 |
|
xp2nd |
⊢ ( 𝑡 ∈ ( 𝑇 × 𝐸 ) → ( 2nd ‘ 𝑡 ) ∈ 𝐸 ) |
| 80 |
39 79
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ 𝑡 ) ∈ 𝐸 ) |
| 81 |
80 77
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ 𝑡 ) ∈ ( Base ‘ 𝐷 ) ) |
| 82 |
|
xp2nd |
⊢ ( 𝑓 ∈ ( 𝑇 × 𝐸 ) → ( 2nd ‘ 𝑓 ) ∈ 𝐸 ) |
| 83 |
42 82
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ 𝑓 ) ∈ 𝐸 ) |
| 84 |
83 77
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ 𝑓 ) ∈ ( Base ‘ 𝐷 ) ) |
| 85 |
19 7 11
|
ringdi |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 𝑠 ∈ ( Base ‘ 𝐷 ) ∧ ( 2nd ‘ 𝑡 ) ∈ ( Base ‘ 𝐷 ) ∧ ( 2nd ‘ 𝑓 ) ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑠 × ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) = ( ( 𝑠 × ( 2nd ‘ 𝑡 ) ) ⨣ ( 𝑠 × ( 2nd ‘ 𝑓 ) ) ) ) |
| 86 |
76 78 81 84 85
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 × ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) = ( ( 𝑠 × ( 2nd ‘ 𝑡 ) ) ⨣ ( 𝑠 × ( 2nd ‘ 𝑓 ) ) ) ) |
| 87 |
19 7
|
ringacl |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 2nd ‘ 𝑡 ) ∈ ( Base ‘ 𝐷 ) ∧ ( 2nd ‘ 𝑓 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ∈ ( Base ‘ 𝐷 ) ) |
| 88 |
76 81 84 87
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ∈ ( Base ‘ 𝐷 ) ) |
| 89 |
88 77
|
eleqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ∈ 𝐸 ) |
| 90 |
2 3 4 5 6 11
|
dvhmulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ∈ 𝐸 ) ) → ( 𝑠 × ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) = ( 𝑠 ∘ ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) ) |
| 91 |
37 38 89 90
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 × ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) = ( 𝑠 ∘ ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) ) |
| 92 |
2 3 4 5 6 11
|
dvhmulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 2nd ‘ 𝑡 ) ∈ 𝐸 ) ) → ( 𝑠 × ( 2nd ‘ 𝑡 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) ) |
| 93 |
37 38 80 92
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 × ( 2nd ‘ 𝑡 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) ) |
| 94 |
2 3 4 5 6 11
|
dvhmulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 2nd ‘ 𝑓 ) ∈ 𝐸 ) ) → ( 𝑠 × ( 2nd ‘ 𝑓 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 95 |
37 38 83 94
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 × ( 2nd ‘ 𝑓 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 96 |
93 95
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 × ( 2nd ‘ 𝑡 ) ) ⨣ ( 𝑠 × ( 2nd ‘ 𝑓 ) ) ) = ( ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) ⨣ ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) ) |
| 97 |
86 91 96
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ∘ ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) = ( ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) ⨣ ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) ) |
| 98 |
48
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑡 + 𝑓 ) ) = ( 2nd ‘ 〈 ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) , ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 99 |
52 53
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 1st ‘ 𝑡 ) ∘ ( 1st ‘ 𝑓 ) ) , ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) |
| 100 |
98 99
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑡 + 𝑓 ) ) = ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) |
| 101 |
100
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ∘ ( 2nd ‘ ( 𝑡 + 𝑓 ) ) ) = ( 𝑠 ∘ ( ( 2nd ‘ 𝑡 ) ⨣ ( 2nd ‘ 𝑓 ) ) ) ) |
| 102 |
58
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑠 · 𝑡 ) ) = ( 2nd ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) 〉 ) ) |
| 103 |
60 63
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑡 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) 〉 ) = ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) |
| 104 |
102 103
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑠 · 𝑡 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) ) |
| 105 |
67
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑠 · 𝑓 ) ) = ( 2nd ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 106 |
69 71
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) |
| 107 |
105 106
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑠 · 𝑓 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 108 |
104 107
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 2nd ‘ ( 𝑠 · 𝑡 ) ) ⨣ ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ) = ( ( 𝑠 ∘ ( 2nd ‘ 𝑡 ) ) ⨣ ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) ) |
| 109 |
97 101 108
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ∘ ( 2nd ‘ ( 𝑡 + 𝑓 ) ) ) = ( ( 2nd ‘ ( 𝑠 · 𝑡 ) ) ⨣ ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ) ) |
| 110 |
75 109
|
opeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 〈 ( 𝑠 ‘ ( 1st ‘ ( 𝑡 + 𝑓 ) ) ) , ( 𝑠 ∘ ( 2nd ‘ ( 𝑡 + 𝑓 ) ) ) 〉 = 〈 ( ( 1st ‘ ( 𝑠 · 𝑡 ) ) ∘ ( 1st ‘ ( 𝑠 · 𝑓 ) ) ) , ( ( 2nd ‘ ( 𝑠 · 𝑡 ) ) ⨣ ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ) 〉 ) |
| 111 |
2 3 4 5 6 7 8
|
dvhvaddcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 + 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 112 |
111
|
3adantr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 + 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 113 |
2 3 4 5 12
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 + 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · ( 𝑡 + 𝑓 ) ) = 〈 ( 𝑠 ‘ ( 1st ‘ ( 𝑡 + 𝑓 ) ) ) , ( 𝑠 ∘ ( 2nd ‘ ( 𝑡 + 𝑓 ) ) ) 〉 ) |
| 114 |
37 38 112 113
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · ( 𝑡 + 𝑓 ) ) = 〈 ( 𝑠 ‘ ( 1st ‘ ( 𝑡 + 𝑓 ) ) ) , ( 𝑠 ∘ ( 2nd ‘ ( 𝑡 + 𝑓 ) ) ) 〉 ) |
| 115 |
35
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑡 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 116 |
2 3 4 5 12
|
dvhvscacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 117 |
116
|
3adantr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 118 |
2 3 4 5 6 8 7
|
dvhvadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 · 𝑡 ) ∈ ( 𝑇 × 𝐸 ) ∧ ( 𝑠 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 · 𝑡 ) + ( 𝑠 · 𝑓 ) ) = 〈 ( ( 1st ‘ ( 𝑠 · 𝑡 ) ) ∘ ( 1st ‘ ( 𝑠 · 𝑓 ) ) ) , ( ( 2nd ‘ ( 𝑠 · 𝑡 ) ) ⨣ ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ) 〉 ) |
| 119 |
37 115 117 118
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 · 𝑡 ) + ( 𝑠 · 𝑓 ) ) = 〈 ( ( 1st ‘ ( 𝑠 · 𝑡 ) ) ∘ ( 1st ‘ ( 𝑠 · 𝑓 ) ) ) , ( ( 2nd ‘ ( 𝑠 · 𝑡 ) ) ⨣ ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ) 〉 ) |
| 120 |
110 114 119
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ ( 𝑇 × 𝐸 ) ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · ( 𝑡 + 𝑓 ) ) = ( ( 𝑠 · 𝑡 ) + ( 𝑠 · 𝑓 ) ) ) |
| 121 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 122 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑠 ∈ 𝐸 ) |
| 123 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑡 ∈ 𝐸 ) |
| 124 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑓 ∈ ( 𝑇 × 𝐸 ) ) |
| 125 |
124 43
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ 𝑓 ) ∈ 𝑇 ) |
| 126 |
|
eqid |
⊢ ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 127 |
2 3 4 24 126
|
erngplus2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ ( 1st ‘ 𝑓 ) ∈ 𝑇 ) ) → ( ( 𝑠 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) = ( ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ∘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 128 |
121 122 123 125 127
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) = ( ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ∘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 129 |
25
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ 𝐷 ) = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 130 |
7 129
|
eqtrid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ⨣ = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 131 |
130
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑠 ⨣ 𝑡 ) = ( 𝑠 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑡 ) ) |
| 132 |
131
|
fveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑠 ⨣ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) = ( ( 𝑠 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) ) |
| 133 |
132
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) = ( ( 𝑠 ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) ) |
| 134 |
66
|
3adantr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑓 ) = 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 135 |
134
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑠 · 𝑓 ) ) = ( 1st ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 136 |
135 72
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑠 · 𝑓 ) ) = ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ) |
| 137 |
2 3 4 5 12
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 · 𝑓 ) = 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 138 |
137
|
3adantr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 · 𝑓 ) = 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 139 |
138
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑡 · 𝑓 ) ) = ( 1st ‘ 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 140 |
|
fvex |
⊢ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ∈ V |
| 141 |
|
vex |
⊢ 𝑡 ∈ V |
| 142 |
141 70
|
coex |
⊢ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ∈ V |
| 143 |
140 142
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) |
| 144 |
139 143
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ ( 𝑡 · 𝑓 ) ) = ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) |
| 145 |
136 144
|
coeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 1st ‘ ( 𝑠 · 𝑓 ) ) ∘ ( 1st ‘ ( 𝑡 · 𝑓 ) ) ) = ( ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) ∘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 146 |
128 133 145
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) = ( ( 1st ‘ ( 𝑠 · 𝑓 ) ) ∘ ( 1st ‘ ( 𝑡 · 𝑓 ) ) ) ) |
| 147 |
33
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝐷 ∈ Ring ) |
| 148 |
21
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝐸 = ( Base ‘ 𝐷 ) ) |
| 149 |
122 148
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑠 ∈ ( Base ‘ 𝐷 ) ) |
| 150 |
123 148
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑡 ∈ ( Base ‘ 𝐷 ) ) |
| 151 |
124 82
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ 𝑓 ) ∈ 𝐸 ) |
| 152 |
151 148
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ 𝑓 ) ∈ ( Base ‘ 𝐷 ) ) |
| 153 |
19 7 11
|
ringdir |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 𝑠 ∈ ( Base ‘ 𝐷 ) ∧ 𝑡 ∈ ( Base ‘ 𝐷 ) ∧ ( 2nd ‘ 𝑓 ) ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) × ( 2nd ‘ 𝑓 ) ) = ( ( 𝑠 × ( 2nd ‘ 𝑓 ) ) ⨣ ( 𝑡 × ( 2nd ‘ 𝑓 ) ) ) ) |
| 154 |
147 149 150 152 153
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) × ( 2nd ‘ 𝑓 ) ) = ( ( 𝑠 × ( 2nd ‘ 𝑓 ) ) ⨣ ( 𝑡 × ( 2nd ‘ 𝑓 ) ) ) ) |
| 155 |
19 7
|
ringacl |
⊢ ( ( 𝐷 ∈ Ring ∧ 𝑠 ∈ ( Base ‘ 𝐷 ) ∧ 𝑡 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑠 ⨣ 𝑡 ) ∈ ( Base ‘ 𝐷 ) ) |
| 156 |
147 149 150 155
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ⨣ 𝑡 ) ∈ ( Base ‘ 𝐷 ) ) |
| 157 |
156 148
|
eleqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ⨣ 𝑡 ) ∈ 𝐸 ) |
| 158 |
2 3 4 5 6 11
|
dvhmulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 ⨣ 𝑡 ) ∈ 𝐸 ∧ ( 2nd ‘ 𝑓 ) ∈ 𝐸 ) ) → ( ( 𝑠 ⨣ 𝑡 ) × ( 2nd ‘ 𝑓 ) ) = ( ( 𝑠 ⨣ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 159 |
121 157 151 158
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) × ( 2nd ‘ 𝑓 ) ) = ( ( 𝑠 ⨣ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 160 |
121 122 151 94
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 × ( 2nd ‘ 𝑓 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 161 |
2 3 4 5 6 11
|
dvhmulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 2nd ‘ 𝑓 ) ∈ 𝐸 ) ) → ( 𝑡 × ( 2nd ‘ 𝑓 ) ) = ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 162 |
121 123 151 161
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 × ( 2nd ‘ 𝑓 ) ) = ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 163 |
160 162
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 × ( 2nd ‘ 𝑓 ) ) ⨣ ( 𝑡 × ( 2nd ‘ 𝑓 ) ) ) = ( ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ⨣ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) ) |
| 164 |
154 159 163
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) = ( ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ⨣ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) ) |
| 165 |
134
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑠 · 𝑓 ) ) = ( 2nd ‘ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 166 |
165 106
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑠 · 𝑓 ) ) = ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 167 |
138
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑡 · 𝑓 ) ) = ( 2nd ‘ 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 168 |
140 142
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) |
| 169 |
167 168
|
eqtrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ ( 𝑡 · 𝑓 ) ) = ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 170 |
166 169
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ⨣ ( 2nd ‘ ( 𝑡 · 𝑓 ) ) ) = ( ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) ⨣ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) ) |
| 171 |
164 170
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) = ( ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ⨣ ( 2nd ‘ ( 𝑡 · 𝑓 ) ) ) ) |
| 172 |
146 171
|
opeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 〈 ( ( 𝑠 ⨣ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) , ( ( 𝑠 ⨣ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 = 〈 ( ( 1st ‘ ( 𝑠 · 𝑓 ) ) ∘ ( 1st ‘ ( 𝑡 · 𝑓 ) ) ) , ( ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ⨣ ( 2nd ‘ ( 𝑡 · 𝑓 ) ) ) 〉 ) |
| 173 |
2 3 4 5 12
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 ⨣ 𝑡 ) ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) · 𝑓 ) = 〈 ( ( 𝑠 ⨣ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) , ( ( 𝑠 ⨣ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 174 |
121 157 124 173
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) · 𝑓 ) = 〈 ( ( 𝑠 ⨣ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) , ( ( 𝑠 ⨣ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 175 |
116
|
3adantr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 176 |
2 3 4 5 12
|
dvhvscacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 177 |
176
|
3adantr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) |
| 178 |
2 3 4 5 6 8 7
|
dvhvadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ∧ ( 𝑡 · 𝑓 ) ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 · 𝑓 ) + ( 𝑡 · 𝑓 ) ) = 〈 ( ( 1st ‘ ( 𝑠 · 𝑓 ) ) ∘ ( 1st ‘ ( 𝑡 · 𝑓 ) ) ) , ( ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ⨣ ( 2nd ‘ ( 𝑡 · 𝑓 ) ) ) 〉 ) |
| 179 |
121 175 177 178
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 · 𝑓 ) + ( 𝑡 · 𝑓 ) ) = 〈 ( ( 1st ‘ ( 𝑠 · 𝑓 ) ) ∘ ( 1st ‘ ( 𝑡 · 𝑓 ) ) ) , ( ( 2nd ‘ ( 𝑠 · 𝑓 ) ) ⨣ ( 2nd ‘ ( 𝑡 · 𝑓 ) ) ) 〉 ) |
| 180 |
172 174 179
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ⨣ 𝑡 ) · 𝑓 ) = ( ( 𝑠 · 𝑓 ) + ( 𝑡 · 𝑓 ) ) ) |
| 181 |
2 3 4
|
tendocoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ∧ ( 1st ‘ 𝑓 ) ∈ 𝑇 ) → ( ( 𝑠 ∘ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) = ( 𝑠 ‘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 182 |
121 122 123 125 181
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ∘ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) = ( 𝑠 ‘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) ) |
| 183 |
|
coass |
⊢ ( ( 𝑠 ∘ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) = ( 𝑠 ∘ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) |
| 184 |
183
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ∘ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) = ( 𝑠 ∘ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) ) |
| 185 |
182 184
|
opeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → 〈 ( ( 𝑠 ∘ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) , ( ( 𝑠 ∘ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 = 〈 ( 𝑠 ‘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) , ( 𝑠 ∘ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) 〉 ) |
| 186 |
2 4
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) → ( 𝑠 ∘ 𝑡 ) ∈ 𝐸 ) |
| 187 |
121 122 123 186
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 ∘ 𝑡 ) ∈ 𝐸 ) |
| 188 |
2 3 4 5 12
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 ∘ 𝑡 ) ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ∘ 𝑡 ) · 𝑓 ) = 〈 ( ( 𝑠 ∘ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) , ( ( 𝑠 ∘ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 189 |
121 187 124 188
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ∘ 𝑡 ) · 𝑓 ) = 〈 ( ( 𝑠 ∘ 𝑡 ) ‘ ( 1st ‘ 𝑓 ) ) , ( ( 𝑠 ∘ 𝑡 ) ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 190 |
2 3 4
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ ( 1st ‘ 𝑓 ) ∈ 𝑇 ) → ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ∈ 𝑇 ) |
| 191 |
121 123 125 190
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ∈ 𝑇 ) |
| 192 |
2 4
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ ( 2nd ‘ 𝑓 ) ∈ 𝐸 ) → ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ∈ 𝐸 ) |
| 193 |
121 123 151 192
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ∈ 𝐸 ) |
| 194 |
2 3 4 5 12
|
dvhopvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ∈ 𝑇 ∧ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ∈ 𝐸 ) ) → ( 𝑠 · 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = 〈 ( 𝑠 ‘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) , ( 𝑠 ∘ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) 〉 ) |
| 195 |
121 122 191 193 194
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = 〈 ( 𝑠 ‘ ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) ) , ( 𝑠 ∘ ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) ) 〉 ) |
| 196 |
185 189 195
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 ∘ 𝑡 ) · 𝑓 ) = ( 𝑠 · 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 197 |
2 3 4 5 6 11
|
dvhmulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ) ) → ( 𝑠 × 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
| 198 |
197
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 × 𝑡 ) = ( 𝑠 ∘ 𝑡 ) ) |
| 199 |
198
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 × 𝑡 ) · 𝑓 ) = ( ( 𝑠 ∘ 𝑡 ) · 𝑓 ) ) |
| 200 |
138
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑠 · ( 𝑡 · 𝑓 ) ) = ( 𝑠 · 〈 ( 𝑡 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑡 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 201 |
196 199 200
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑓 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( 𝑠 × 𝑡 ) · 𝑓 ) = ( 𝑠 · ( 𝑡 · 𝑓 ) ) ) |
| 202 |
|
xp1st |
⊢ ( 𝑠 ∈ ( 𝑇 × 𝐸 ) → ( 1st ‘ 𝑠 ) ∈ 𝑇 ) |
| 203 |
202
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → ( 1st ‘ 𝑠 ) ∈ 𝑇 ) |
| 204 |
|
fvresi |
⊢ ( ( 1st ‘ 𝑠 ) ∈ 𝑇 → ( ( I ↾ 𝑇 ) ‘ ( 1st ‘ 𝑠 ) ) = ( 1st ‘ 𝑠 ) ) |
| 205 |
203 204
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → ( ( I ↾ 𝑇 ) ‘ ( 1st ‘ 𝑠 ) ) = ( 1st ‘ 𝑠 ) ) |
| 206 |
|
xp2nd |
⊢ ( 𝑠 ∈ ( 𝑇 × 𝐸 ) → ( 2nd ‘ 𝑠 ) ∈ 𝐸 ) |
| 207 |
2 3 4
|
tendof |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 2nd ‘ 𝑠 ) ∈ 𝐸 ) → ( 2nd ‘ 𝑠 ) : 𝑇 ⟶ 𝑇 ) |
| 208 |
206 207
|
sylan2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → ( 2nd ‘ 𝑠 ) : 𝑇 ⟶ 𝑇 ) |
| 209 |
|
fcoi2 |
⊢ ( ( 2nd ‘ 𝑠 ) : 𝑇 ⟶ 𝑇 → ( ( I ↾ 𝑇 ) ∘ ( 2nd ‘ 𝑠 ) ) = ( 2nd ‘ 𝑠 ) ) |
| 210 |
208 209
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → ( ( I ↾ 𝑇 ) ∘ ( 2nd ‘ 𝑠 ) ) = ( 2nd ‘ 𝑠 ) ) |
| 211 |
205 210
|
opeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → 〈 ( ( I ↾ 𝑇 ) ‘ ( 1st ‘ 𝑠 ) ) , ( ( I ↾ 𝑇 ) ∘ ( 2nd ‘ 𝑠 ) ) 〉 = 〈 ( 1st ‘ 𝑠 ) , ( 2nd ‘ 𝑠 ) 〉 ) |
| 212 |
2 3 4
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
| 213 |
212
|
anim1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) ) |
| 214 |
2 3 4 5 12
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝑇 ) ∈ 𝐸 ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) ) → ( ( I ↾ 𝑇 ) · 𝑠 ) = 〈 ( ( I ↾ 𝑇 ) ‘ ( 1st ‘ 𝑠 ) ) , ( ( I ↾ 𝑇 ) ∘ ( 2nd ‘ 𝑠 ) ) 〉 ) |
| 215 |
213 214
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → ( ( I ↾ 𝑇 ) · 𝑠 ) = 〈 ( ( I ↾ 𝑇 ) ‘ ( 1st ‘ 𝑠 ) ) , ( ( I ↾ 𝑇 ) ∘ ( 2nd ‘ 𝑠 ) ) 〉 ) |
| 216 |
|
1st2nd2 |
⊢ ( 𝑠 ∈ ( 𝑇 × 𝐸 ) → 𝑠 = 〈 ( 1st ‘ 𝑠 ) , ( 2nd ‘ 𝑠 ) 〉 ) |
| 217 |
216
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → 𝑠 = 〈 ( 1st ‘ 𝑠 ) , ( 2nd ‘ 𝑠 ) 〉 ) |
| 218 |
211 215 217
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( 𝑇 × 𝐸 ) ) → ( ( I ↾ 𝑇 ) · 𝑠 ) = 𝑠 ) |
| 219 |
15 16 17 18 21 22 23 29 33 34 36 120 180 201 218
|
islmodd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LMod ) |
| 220 |
6
|
islvec |
⊢ ( 𝑈 ∈ LVec ↔ ( 𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing ) ) |
| 221 |
219 31 220
|
sylanbrc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LVec ) |