Step |
Hyp |
Ref |
Expression |
1 |
|
dvhfvsca.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhfvsca.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhfvsca.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhfvsca.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvhfvsca.s |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
6 |
1 2 3 4 5
|
dvhfvsca |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → · = ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
7 |
6
|
oveqd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 · 𝐹 ) = ( 𝑅 ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 𝐹 ) ) |
8 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
9 |
8
|
dvhvscaval |
⊢ ( ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝑅 ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 𝐹 ) = 〈 ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) , ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) 〉 ) |
10 |
7 9
|
sylan9eq |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑅 · 𝐹 ) = 〈 ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) , ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) 〉 ) |