Step |
Hyp |
Ref |
Expression |
1 |
|
dvhlvec.h |
|- H = ( LHyp ` K ) |
2 |
|
dvhlvec.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dvhlvec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
5 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
6 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
7 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
8 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
9 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
10 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
11 |
|
eqid |
|- ( invg ` ( Scalar ` U ) ) = ( invg ` ( Scalar ` U ) ) |
12 |
|
eqid |
|- ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) |
13 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
14 |
4 1 5 6 2 7 8 9 10 11 12 13
|
dvhlveclem |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |
15 |
3 14
|
syl |
|- ( ph -> U e. LVec ) |