| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhlvec.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvhlvec.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dvhlvec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 5 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 6 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 7 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 8 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
| 9 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 10 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
| 11 |
|
eqid |
|- ( invg ` ( Scalar ` U ) ) = ( invg ` ( Scalar ` U ) ) |
| 12 |
|
eqid |
|- ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) |
| 13 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 14 |
4 1 5 6 2 7 8 9 10 11 12 13
|
dvhlveclem |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |
| 15 |
3 14
|
syl |
|- ( ph -> U e. LVec ) |