Metamath Proof Explorer


Theorem dvhlvec

Description: The full vector space U constructed from a Hilbert lattice K (given a fiducial hyperplane W ) is a left module. (Contributed by NM, 23-May-2015)

Ref Expression
Hypotheses dvhlvec.h H = LHyp K
dvhlvec.u U = DVecH K W
dvhlvec.k φ K HL W H
Assertion dvhlvec φ U LVec

Proof

Step Hyp Ref Expression
1 dvhlvec.h H = LHyp K
2 dvhlvec.u U = DVecH K W
3 dvhlvec.k φ K HL W H
4 eqid Base K = Base K
5 eqid LTrn K W = LTrn K W
6 eqid TEndo K W = TEndo K W
7 eqid Scalar U = Scalar U
8 eqid + Scalar U = + Scalar U
9 eqid + U = + U
10 eqid 0 Scalar U = 0 Scalar U
11 eqid inv g Scalar U = inv g Scalar U
12 eqid Scalar U = Scalar U
13 eqid U = U
14 4 1 5 6 2 7 8 9 10 11 12 13 dvhlveclem K HL W H U LVec
15 3 14 syl φ U LVec