Metamath Proof Explorer


Theorem dvhlmod

Description: The full vector space U constructed from a Hilbert lattice K (given a fiducial hyperplane W ) is a left module. (Contributed by NM, 23-May-2015)

Ref Expression
Hypotheses dvhlvec.h H = LHyp K
dvhlvec.u U = DVecH K W
dvhlvec.k φ K HL W H
Assertion dvhlmod φ U LMod

Proof

Step Hyp Ref Expression
1 dvhlvec.h H = LHyp K
2 dvhlvec.u U = DVecH K W
3 dvhlvec.k φ K HL W H
4 1 2 3 dvhlvec φ U LVec
5 lveclmod U LVec U LMod
6 4 5 syl φ U LMod