Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dvhlmod
Metamath Proof Explorer
Description: The full vector space U constructed from a Hilbert lattice K
(given a fiducial hyperplane W ) is a left module. (Contributed by NM , 23-May-2015)
Ref
Expression
Hypotheses
dvhlvec.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
dvhlvec.u
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhlvec.k
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) )
Assertion
dvhlmod
⊢ ( 𝜑 → 𝑈 ∈ LMod )
Proof
Step
Hyp
Ref
Expression
1
dvhlvec.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
2
dvhlvec.u
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3
dvhlvec.k
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) )
4
1 2 3
dvhlvec
⊢ ( 𝜑 → 𝑈 ∈ LVec )
5
lveclmod
⊢ ( 𝑈 ∈ LVec → 𝑈 ∈ LMod )
6
4 5
syl
⊢ ( 𝜑 → 𝑈 ∈ LMod )