Metamath Proof Explorer


Theorem tendorinv

Description: Right multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses tendoinv.b B = Base K
tendoinv.h H = LHyp K
tendoinv.t T = LTrn K W
tendoinv.e E = TEndo K W
tendoinv.o O = h T I B
tendoinv.u U = DVecH K W
tendoinv.f F = Scalar U
tendoinv.n N = inv r F
Assertion tendorinv K HL W H S E S O S N S = I T

Proof

Step Hyp Ref Expression
1 tendoinv.b B = Base K
2 tendoinv.h H = LHyp K
3 tendoinv.t T = LTrn K W
4 tendoinv.e E = TEndo K W
5 tendoinv.o O = h T I B
6 tendoinv.u U = DVecH K W
7 tendoinv.f F = Scalar U
8 tendoinv.n N = inv r F
9 simp1 K HL W H S E S O K HL W H
10 eqid EDRing K W = EDRing K W
11 2 10 6 7 dvhsca K HL W H F = EDRing K W
12 9 11 syl K HL W H S E S O F = EDRing K W
13 2 10 erngdv K HL W H EDRing K W DivRing
14 9 13 syl K HL W H S E S O EDRing K W DivRing
15 12 14 eqeltrd K HL W H S E S O F DivRing
16 simp2 K HL W H S E S O S E
17 eqid Base F = Base F
18 2 4 6 7 17 dvhbase K HL W H Base F = E
19 9 18 syl K HL W H S E S O Base F = E
20 16 19 eleqtrrd K HL W H S E S O S Base F
21 simp3 K HL W H S E S O S O
22 11 fveq2d K HL W H 0 F = 0 EDRing K W
23 eqid 0 EDRing K W = 0 EDRing K W
24 1 2 3 10 5 23 erng0g K HL W H 0 EDRing K W = O
25 22 24 eqtrd K HL W H 0 F = O
26 9 25 syl K HL W H S E S O 0 F = O
27 21 26 neeqtrrd K HL W H S E S O S 0 F
28 eqid 0 F = 0 F
29 eqid F = F
30 eqid 1 F = 1 F
31 17 28 29 30 8 drnginvrr F DivRing S Base F S 0 F S F N S = 1 F
32 15 20 27 31 syl3anc K HL W H S E S O S F N S = 1 F
33 1 2 3 4 5 6 7 8 tendoinvcl K HL W H S E S O N S E N S O
34 33 simpld K HL W H S E S O N S E
35 2 3 4 6 7 29 dvhmulr K HL W H S E N S E S F N S = S N S
36 9 16 34 35 syl12anc K HL W H S E S O S F N S = S N S
37 11 fveq2d K HL W H 1 F = 1 EDRing K W
38 eqid 1 EDRing K W = 1 EDRing K W
39 2 3 10 38 erng1r K HL W H 1 EDRing K W = I T
40 37 39 eqtrd K HL W H 1 F = I T
41 9 40 syl K HL W H S E S O 1 F = I T
42 32 36 41 3eqtr3d K HL W H S E S O S N S = I T