Metamath Proof Explorer


Theorem drnginvrr

Description: Property of the multiplicative inverse in a division ring. ( recid analog). (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses drnginvrl.b B=BaseR
drnginvrl.z 0˙=0R
drnginvrl.t ·˙=R
drnginvrl.u 1˙=1R
drnginvrl.i I=invrR
Assertion drnginvrr RDivRingXBX0˙X·˙IX=1˙

Proof

Step Hyp Ref Expression
1 drnginvrl.b B=BaseR
2 drnginvrl.z 0˙=0R
3 drnginvrl.t ·˙=R
4 drnginvrl.u 1˙=1R
5 drnginvrl.i I=invrR
6 eqid UnitR=UnitR
7 1 6 2 drngunit RDivRingXUnitRXBX0˙
8 drngring RDivRingRRing
9 6 5 3 4 unitrinv RRingXUnitRX·˙IX=1˙
10 9 ex RRingXUnitRX·˙IX=1˙
11 8 10 syl RDivRingXUnitRX·˙IX=1˙
12 7 11 sylbird RDivRingXBX0˙X·˙IX=1˙
13 12 3impib RDivRingXBX0˙X·˙IX=1˙