Metamath Proof Explorer
Description: Property of the multiplicative inverse in a division ring. ( recid2d analog). (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
drnginvrld.b |
|
|
|
drnginvrld.0 |
|
|
|
drnginvrld.t |
|
|
|
drnginvrld.u |
|
|
|
drnginvrld.i |
|
|
|
drnginvrld.r |
|
|
|
drnginvrld.x |
|
|
|
drnginvrld.1 |
|
|
Assertion |
drnginvrld |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drnginvrld.b |
|
| 2 |
|
drnginvrld.0 |
|
| 3 |
|
drnginvrld.t |
|
| 4 |
|
drnginvrld.u |
|
| 5 |
|
drnginvrld.i |
|
| 6 |
|
drnginvrld.r |
|
| 7 |
|
drnginvrld.x |
|
| 8 |
|
drnginvrld.1 |
|
| 9 |
1 2 3 4 5
|
drnginvrl |
|
| 10 |
6 7 8 9
|
syl3anc |
|