Metamath Proof Explorer


Theorem drnginvrld

Description: Property of the multiplicative inverse in a division ring. ( recid2d analog). (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses drnginvrld.b B=BaseR
drnginvrld.0 0˙=0R
drnginvrld.t ·˙=R
drnginvrld.u 1˙=1R
drnginvrld.i I=invrR
drnginvrld.r φRDivRing
drnginvrld.x φXB
drnginvrld.1 φX0˙
Assertion drnginvrld φIX·˙X=1˙

Proof

Step Hyp Ref Expression
1 drnginvrld.b B=BaseR
2 drnginvrld.0 0˙=0R
3 drnginvrld.t ·˙=R
4 drnginvrld.u 1˙=1R
5 drnginvrld.i I=invrR
6 drnginvrld.r φRDivRing
7 drnginvrld.x φXB
8 drnginvrld.1 φX0˙
9 1 2 3 4 5 drnginvrl RDivRingXBX0˙IX·˙X=1˙
10 6 7 8 9 syl3anc φIX·˙X=1˙