Metamath Proof Explorer
Description: Property of the multiplicative inverse in a division ring. ( recid2d analog). (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
drnginvrld.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
drnginvrld.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
drnginvrld.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
drnginvrld.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
|
drnginvrld.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
|
|
drnginvrld.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
|
|
drnginvrld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
drnginvrld.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
|
Assertion |
drnginvrld |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) = 1 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
drnginvrld.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drnginvrld.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drnginvrld.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drnginvrld.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
drnginvrld.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
6 |
|
drnginvrld.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
7 |
|
drnginvrld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
drnginvrld.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
9 |
1 2 3 4 5
|
drnginvrl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) = 1 ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) = 1 ) |