Description: Property of the multiplicative inverse in a division ring. ( recid2d analog). (Contributed by SN, 14-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drnginvrld.b | |- B = ( Base ` R ) |
|
drnginvrld.0 | |- .0. = ( 0g ` R ) |
||
drnginvrld.t | |- .x. = ( .r ` R ) |
||
drnginvrld.u | |- .1. = ( 1r ` R ) |
||
drnginvrld.i | |- I = ( invr ` R ) |
||
drnginvrld.r | |- ( ph -> R e. DivRing ) |
||
drnginvrld.x | |- ( ph -> X e. B ) |
||
drnginvrld.1 | |- ( ph -> X =/= .0. ) |
||
Assertion | drnginvrld | |- ( ph -> ( ( I ` X ) .x. X ) = .1. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvrld.b | |- B = ( Base ` R ) |
|
2 | drnginvrld.0 | |- .0. = ( 0g ` R ) |
|
3 | drnginvrld.t | |- .x. = ( .r ` R ) |
|
4 | drnginvrld.u | |- .1. = ( 1r ` R ) |
|
5 | drnginvrld.i | |- I = ( invr ` R ) |
|
6 | drnginvrld.r | |- ( ph -> R e. DivRing ) |
|
7 | drnginvrld.x | |- ( ph -> X e. B ) |
|
8 | drnginvrld.1 | |- ( ph -> X =/= .0. ) |
|
9 | 1 2 3 4 5 | drnginvrl | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( I ` X ) .x. X ) = .1. ) |
10 | 6 7 8 9 | syl3anc | |- ( ph -> ( ( I ` X ) .x. X ) = .1. ) |