Description: Property of the multiplicative inverse in a division ring. ( recidd analog). (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrld.b | |- B = ( Base ` R ) | |
| drnginvrld.0 | |- .0. = ( 0g ` R ) | ||
| drnginvrld.t | |- .x. = ( .r ` R ) | ||
| drnginvrld.u | |- .1. = ( 1r ` R ) | ||
| drnginvrld.i | |- I = ( invr ` R ) | ||
| drnginvrld.r | |- ( ph -> R e. DivRing ) | ||
| drnginvrld.x | |- ( ph -> X e. B ) | ||
| drnginvrld.1 | |- ( ph -> X =/= .0. ) | ||
| Assertion | drnginvrrd | |- ( ph -> ( X .x. ( I ` X ) ) = .1. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | drnginvrld.b | |- B = ( Base ` R ) | |
| 2 | drnginvrld.0 | |- .0. = ( 0g ` R ) | |
| 3 | drnginvrld.t | |- .x. = ( .r ` R ) | |
| 4 | drnginvrld.u | |- .1. = ( 1r ` R ) | |
| 5 | drnginvrld.i | |- I = ( invr ` R ) | |
| 6 | drnginvrld.r | |- ( ph -> R e. DivRing ) | |
| 7 | drnginvrld.x | |- ( ph -> X e. B ) | |
| 8 | drnginvrld.1 | |- ( ph -> X =/= .0. ) | |
| 9 | 1 2 3 4 5 | drnginvrr | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) | 
| 10 | 6 7 8 9 | syl3anc | |- ( ph -> ( X .x. ( I ` X ) ) = .1. ) |