Step |
Hyp |
Ref |
Expression |
1 |
|
drnginvrl.b |
|- B = ( Base ` R ) |
2 |
|
drnginvrl.z |
|- .0. = ( 0g ` R ) |
3 |
|
drnginvrl.t |
|- .x. = ( .r ` R ) |
4 |
|
drnginvrl.u |
|- .1. = ( 1r ` R ) |
5 |
|
drnginvrl.i |
|- I = ( invr ` R ) |
6 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
7 |
1 6 2
|
drngunit |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) |
8 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
9 |
6 5 3 4
|
unitrinv |
|- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( X .x. ( I ` X ) ) = .1. ) |
10 |
9
|
ex |
|- ( R e. Ring -> ( X e. ( Unit ` R ) -> ( X .x. ( I ` X ) ) = .1. ) ) |
11 |
8 10
|
syl |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( X .x. ( I ` X ) ) = .1. ) ) |
12 |
7 11
|
sylbird |
|- ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) ) |
13 |
12
|
3impib |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) |