Step |
Hyp |
Ref |
Expression |
1 |
|
drnginvrl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drnginvrl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drnginvrl.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drnginvrl.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
drnginvrl.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
7 |
1 6 2
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
8 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
9 |
6 5 3 4
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |
10 |
9
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) ) |
11 |
8 10
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) ) |
12 |
7 11
|
sylbird |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) ) |
13 |
12
|
3impib |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |