Step |
Hyp |
Ref |
Expression |
1 |
|
drngmuleq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngmuleq0.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngmuleq0.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drngmuleq0.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
5 |
|
drngmuleq0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
drngmuleq0.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
df-ne |
⊢ ( 𝑋 ≠ 0 ↔ ¬ 𝑋 = 0 ) |
8 |
|
oveq2 |
⊢ ( ( 𝑋 · 𝑌 ) = 0 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑅 ∈ DivRing ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐵 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
13 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
15 |
1 2 3 13 14
|
drnginvrl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
16 |
10 11 12 15
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
18 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑅 ∈ Ring ) |
21 |
1 2 14
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
22 |
10 11 12 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
23 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ 𝐵 ) |
24 |
1 3
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) |
25 |
20 22 11 23 24
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) |
26 |
1 3 13
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
27 |
19 6 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
29 |
17 25 28
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = 𝑌 ) |
30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) = 𝑌 ) |
31 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → 𝑅 ∈ Ring ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → 𝑅 ∈ Ring ) |
33 |
22
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
34 |
1 3 2
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) = 0 ) |
35 |
32 33 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑋 ) · 0 ) = 0 ) |
36 |
9 30 35
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) ∧ 𝑋 ≠ 0 ) → 𝑌 = 0 ) |
37 |
36
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 𝑋 ≠ 0 → 𝑌 = 0 ) ) |
38 |
7 37
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( ¬ 𝑋 = 0 → 𝑌 = 0 ) ) |
39 |
38
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑌 ) = 0 ) → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) |
40 |
39
|
ex |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
41 |
1 3 2
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = 0 ) |
42 |
19 6 41
|
syl2anc |
⊢ ( 𝜑 → ( 0 · 𝑌 ) = 0 ) |
43 |
|
oveq1 |
⊢ ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ) |
44 |
43
|
eqeq1d |
⊢ ( 𝑋 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 0 · 𝑌 ) = 0 ) ) |
45 |
42 44
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
46 |
1 3 2
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
47 |
19 5 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 · 0 ) = 0 ) |
48 |
|
oveq2 |
⊢ ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑌 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 · 0 ) = 0 ) ) |
50 |
47 49
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
51 |
45 50
|
jaod |
⊢ ( 𝜑 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = 0 ) ) |
52 |
40 51
|
impbid |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |