Step |
Hyp |
Ref |
Expression |
1 |
|
drngmuleq0.b |
|
2 |
|
drngmuleq0.o |
|
3 |
|
drngmuleq0.t |
|
4 |
|
drngmuleq0.r |
|
5 |
|
drngmuleq0.x |
|
6 |
|
drngmuleq0.y |
|
7 |
|
df-ne |
|
8 |
|
oveq2 |
|
9 |
8
|
ad2antlr |
|
10 |
4
|
adantr |
|
11 |
5
|
adantr |
|
12 |
|
simpr |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
1 2 3 13 14
|
drnginvrl |
|
16 |
10 11 12 15
|
syl3anc |
|
17 |
16
|
oveq1d |
|
18 |
|
drngring |
|
19 |
4 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
1 2 14
|
drnginvrcl |
|
22 |
10 11 12 21
|
syl3anc |
|
23 |
6
|
adantr |
|
24 |
1 3
|
ringass |
|
25 |
20 22 11 23 24
|
syl13anc |
|
26 |
1 3 13
|
ringlidm |
|
27 |
19 6 26
|
syl2anc |
|
28 |
27
|
adantr |
|
29 |
17 25 28
|
3eqtr3d |
|
30 |
29
|
adantlr |
|
31 |
19
|
adantr |
|
32 |
31
|
adantr |
|
33 |
22
|
adantlr |
|
34 |
1 3 2
|
ringrz |
|
35 |
32 33 34
|
syl2anc |
|
36 |
9 30 35
|
3eqtr3d |
|
37 |
36
|
ex |
|
38 |
7 37
|
syl5bir |
|
39 |
38
|
orrd |
|
40 |
39
|
ex |
|
41 |
1 3 2
|
ringlz |
|
42 |
19 6 41
|
syl2anc |
|
43 |
|
oveq1 |
|
44 |
43
|
eqeq1d |
|
45 |
42 44
|
syl5ibrcom |
|
46 |
1 3 2
|
ringrz |
|
47 |
19 5 46
|
syl2anc |
|
48 |
|
oveq2 |
|
49 |
48
|
eqeq1d |
|
50 |
47 49
|
syl5ibrcom |
|
51 |
45 50
|
jaod |
|
52 |
40 51
|
impbid |
|