Metamath Proof Explorer


Theorem drngmulne0

Description: A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses drngmuleq0.b B=BaseR
drngmuleq0.o 0˙=0R
drngmuleq0.t ·˙=R
drngmuleq0.r φRDivRing
drngmuleq0.x φXB
drngmuleq0.y φYB
Assertion drngmulne0 φX·˙Y0˙X0˙Y0˙

Proof

Step Hyp Ref Expression
1 drngmuleq0.b B=BaseR
2 drngmuleq0.o 0˙=0R
3 drngmuleq0.t ·˙=R
4 drngmuleq0.r φRDivRing
5 drngmuleq0.x φXB
6 drngmuleq0.y φYB
7 1 2 3 4 5 6 drngmul0or φX·˙Y=0˙X=0˙Y=0˙
8 7 necon3abid φX·˙Y0˙¬X=0˙Y=0˙
9 neanior X0˙Y0˙¬X=0˙Y=0˙
10 8 9 bitr4di φX·˙Y0˙X0˙Y0˙