Description: An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngmuleq0.b | |
|
drngmuleq0.o | |
||
drngmuleq0.t | |
||
drngmuleq0.r | |
||
drngmuleq0.x | |
||
drngmuleq0.y | |
||
drngmuleq0.e | |
||
Assertion | drngmuleq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmuleq0.b | |
|
2 | drngmuleq0.o | |
|
3 | drngmuleq0.t | |
|
4 | drngmuleq0.r | |
|
5 | drngmuleq0.x | |
|
6 | drngmuleq0.y | |
|
7 | drngmuleq0.e | |
|
8 | 1 2 3 4 5 6 | drngmul0or | |
9 | df-ne | |
|
10 | orel2 | |
|
11 | orc | |
|
12 | 10 11 | impbid1 | |
13 | 9 12 | sylbi | |
14 | 7 13 | syl | |
15 | 8 14 | bitrd | |