Step |
Hyp |
Ref |
Expression |
1 |
|
drngmuleq0.b |
|- B = ( Base ` R ) |
2 |
|
drngmuleq0.o |
|- .0. = ( 0g ` R ) |
3 |
|
drngmuleq0.t |
|- .x. = ( .r ` R ) |
4 |
|
drngmuleq0.r |
|- ( ph -> R e. DivRing ) |
5 |
|
drngmuleq0.x |
|- ( ph -> X e. B ) |
6 |
|
drngmuleq0.y |
|- ( ph -> Y e. B ) |
7 |
|
drngmuleq0.e |
|- ( ph -> Y =/= .0. ) |
8 |
1 2 3 4 5 6
|
drngmul0or |
|- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
9 |
|
df-ne |
|- ( Y =/= .0. <-> -. Y = .0. ) |
10 |
|
orel2 |
|- ( -. Y = .0. -> ( ( X = .0. \/ Y = .0. ) -> X = .0. ) ) |
11 |
|
orc |
|- ( X = .0. -> ( X = .0. \/ Y = .0. ) ) |
12 |
10 11
|
impbid1 |
|- ( -. Y = .0. -> ( ( X = .0. \/ Y = .0. ) <-> X = .0. ) ) |
13 |
9 12
|
sylbi |
|- ( Y =/= .0. -> ( ( X = .0. \/ Y = .0. ) <-> X = .0. ) ) |
14 |
7 13
|
syl |
|- ( ph -> ( ( X = .0. \/ Y = .0. ) <-> X = .0. ) ) |
15 |
8 14
|
bitrd |
|- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) ) |