Step |
Hyp |
Ref |
Expression |
1 |
|
drngmuleq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngmuleq0.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngmuleq0.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drngmuleq0.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
5 |
|
drngmuleq0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
drngmuleq0.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
drngmuleq0.e |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
8 |
1 2 3 4 5 6
|
drngmul0or |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
9 |
|
df-ne |
⊢ ( 𝑌 ≠ 0 ↔ ¬ 𝑌 = 0 ) |
10 |
|
orel2 |
⊢ ( ¬ 𝑌 = 0 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) → 𝑋 = 0 ) ) |
11 |
|
orc |
⊢ ( 𝑋 = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) |
12 |
10 11
|
impbid1 |
⊢ ( ¬ 𝑌 = 0 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) ↔ 𝑋 = 0 ) ) |
13 |
9 12
|
sylbi |
⊢ ( 𝑌 ≠ 0 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) ↔ 𝑋 = 0 ) ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) ↔ 𝑋 = 0 ) ) |
15 |
8 14
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑋 = 0 ) ) |