Step |
Hyp |
Ref |
Expression |
1 |
|
drngmuleq0.b |
|- B = ( Base ` R ) |
2 |
|
drngmuleq0.o |
|- .0. = ( 0g ` R ) |
3 |
|
drngmuleq0.t |
|- .x. = ( .r ` R ) |
4 |
|
drngmuleq0.r |
|- ( ph -> R e. DivRing ) |
5 |
|
drngmuleq0.x |
|- ( ph -> X e. B ) |
6 |
|
drngmuleq0.y |
|- ( ph -> Y e. B ) |
7 |
|
df-ne |
|- ( X =/= .0. <-> -. X = .0. ) |
8 |
|
oveq2 |
|- ( ( X .x. Y ) = .0. -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = ( ( ( invr ` R ) ` X ) .x. .0. ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = ( ( ( invr ` R ) ` X ) .x. .0. ) ) |
10 |
4
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> R e. DivRing ) |
11 |
5
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> X e. B ) |
12 |
|
simpr |
|- ( ( ph /\ X =/= .0. ) -> X =/= .0. ) |
13 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
14 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
15 |
1 2 3 13 14
|
drnginvrl |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) |
16 |
10 11 12 15
|
syl3anc |
|- ( ( ph /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) |
17 |
16
|
oveq1d |
|- ( ( ph /\ X =/= .0. ) -> ( ( ( ( invr ` R ) ` X ) .x. X ) .x. Y ) = ( ( 1r ` R ) .x. Y ) ) |
18 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
19 |
4 18
|
syl |
|- ( ph -> R e. Ring ) |
20 |
19
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> R e. Ring ) |
21 |
1 2 14
|
drnginvrcl |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( invr ` R ) ` X ) e. B ) |
22 |
10 11 12 21
|
syl3anc |
|- ( ( ph /\ X =/= .0. ) -> ( ( invr ` R ) ` X ) e. B ) |
23 |
6
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> Y e. B ) |
24 |
1 3
|
ringass |
|- ( ( R e. Ring /\ ( ( ( invr ` R ) ` X ) e. B /\ X e. B /\ Y e. B ) ) -> ( ( ( ( invr ` R ) ` X ) .x. X ) .x. Y ) = ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) ) |
25 |
20 22 11 23 24
|
syl13anc |
|- ( ( ph /\ X =/= .0. ) -> ( ( ( ( invr ` R ) ` X ) .x. X ) .x. Y ) = ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) ) |
26 |
1 3 13
|
ringlidm |
|- ( ( R e. Ring /\ Y e. B ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
27 |
19 6 26
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .x. Y ) = Y ) |
28 |
27
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
29 |
17 25 28
|
3eqtr3d |
|- ( ( ph /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = Y ) |
30 |
29
|
adantlr |
|- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = Y ) |
31 |
19
|
adantr |
|- ( ( ph /\ ( X .x. Y ) = .0. ) -> R e. Ring ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> R e. Ring ) |
33 |
22
|
adantlr |
|- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( invr ` R ) ` X ) e. B ) |
34 |
1 3 2
|
ringrz |
|- ( ( R e. Ring /\ ( ( invr ` R ) ` X ) e. B ) -> ( ( ( invr ` R ) ` X ) .x. .0. ) = .0. ) |
35 |
32 33 34
|
syl2anc |
|- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. .0. ) = .0. ) |
36 |
9 30 35
|
3eqtr3d |
|- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> Y = .0. ) |
37 |
36
|
ex |
|- ( ( ph /\ ( X .x. Y ) = .0. ) -> ( X =/= .0. -> Y = .0. ) ) |
38 |
7 37
|
syl5bir |
|- ( ( ph /\ ( X .x. Y ) = .0. ) -> ( -. X = .0. -> Y = .0. ) ) |
39 |
38
|
orrd |
|- ( ( ph /\ ( X .x. Y ) = .0. ) -> ( X = .0. \/ Y = .0. ) ) |
40 |
39
|
ex |
|- ( ph -> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) |
41 |
1 3 2
|
ringlz |
|- ( ( R e. Ring /\ Y e. B ) -> ( .0. .x. Y ) = .0. ) |
42 |
19 6 41
|
syl2anc |
|- ( ph -> ( .0. .x. Y ) = .0. ) |
43 |
|
oveq1 |
|- ( X = .0. -> ( X .x. Y ) = ( .0. .x. Y ) ) |
44 |
43
|
eqeq1d |
|- ( X = .0. -> ( ( X .x. Y ) = .0. <-> ( .0. .x. Y ) = .0. ) ) |
45 |
42 44
|
syl5ibrcom |
|- ( ph -> ( X = .0. -> ( X .x. Y ) = .0. ) ) |
46 |
1 3 2
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
47 |
19 5 46
|
syl2anc |
|- ( ph -> ( X .x. .0. ) = .0. ) |
48 |
|
oveq2 |
|- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
49 |
48
|
eqeq1d |
|- ( Y = .0. -> ( ( X .x. Y ) = .0. <-> ( X .x. .0. ) = .0. ) ) |
50 |
47 49
|
syl5ibrcom |
|- ( ph -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
51 |
45 50
|
jaod |
|- ( ph -> ( ( X = .0. \/ Y = .0. ) -> ( X .x. Y ) = .0. ) ) |
52 |
40 51
|
impbid |
|- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |