Metamath Proof Explorer


Theorem opprdrng

Description: The opposite of a division ring is also a division ring. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypothesis opprdrng.1 O=opprR
Assertion opprdrng RDivRingODivRing

Proof

Step Hyp Ref Expression
1 opprdrng.1 O=opprR
2 1 opprringb RRingORing
3 2 anbi1i RRingUnitR=BaseR0RORingUnitR=BaseR0R
4 eqid BaseR=BaseR
5 eqid UnitR=UnitR
6 eqid 0R=0R
7 4 5 6 isdrng RDivRingRRingUnitR=BaseR0R
8 1 4 opprbas BaseR=BaseO
9 5 1 opprunit UnitR=UnitO
10 1 6 oppr0 0R=0O
11 8 9 10 isdrng ODivRingORingUnitR=BaseR0R
12 3 7 11 3bitr4i RDivRingODivRing