Step |
Hyp |
Ref |
Expression |
1 |
|
tendoinv.b |
|- B = ( Base ` K ) |
2 |
|
tendoinv.h |
|- H = ( LHyp ` K ) |
3 |
|
tendoinv.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
tendoinv.e |
|- E = ( ( TEndo ` K ) ` W ) |
5 |
|
tendoinv.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
6 |
|
tendoinv.u |
|- U = ( ( DVecH ` K ) ` W ) |
7 |
|
tendoinv.f |
|- F = ( Scalar ` U ) |
8 |
|
tendoinv.n |
|- N = ( invr ` F ) |
9 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( K e. HL /\ W e. H ) ) |
10 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
11 |
2 10 6 7
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> F = ( ( EDRing ` K ) ` W ) ) |
12 |
9 11
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> F = ( ( EDRing ` K ) ` W ) ) |
13 |
2 10
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
14 |
9 13
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
15 |
12 14
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> F e. DivRing ) |
16 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S e. E ) |
17 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
18 |
2 4 6 7 17
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` F ) = E ) |
19 |
9 18
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( Base ` F ) = E ) |
20 |
16 19
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S e. ( Base ` F ) ) |
21 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S =/= O ) |
22 |
11
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` F ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) ) |
23 |
|
eqid |
|- ( 0g ` ( ( EDRing ` K ) ` W ) ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) |
24 |
1 2 3 10 5 23
|
erng0g |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` ( ( EDRing ` K ) ` W ) ) = O ) |
25 |
22 24
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` F ) = O ) |
26 |
9 25
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( 0g ` F ) = O ) |
27 |
21 26
|
neeqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S =/= ( 0g ` F ) ) |
28 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
29 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
30 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
31 |
17 28 29 30 8
|
drnginvrr |
|- ( ( F e. DivRing /\ S e. ( Base ` F ) /\ S =/= ( 0g ` F ) ) -> ( S ( .r ` F ) ( N ` S ) ) = ( 1r ` F ) ) |
32 |
15 20 27 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( S ( .r ` F ) ( N ` S ) ) = ( 1r ` F ) ) |
33 |
1 2 3 4 5 6 7 8
|
tendoinvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( ( N ` S ) e. E /\ ( N ` S ) =/= O ) ) |
34 |
33
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) e. E ) |
35 |
2 3 4 6 7 29
|
dvhmulr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. E /\ ( N ` S ) e. E ) ) -> ( S ( .r ` F ) ( N ` S ) ) = ( S o. ( N ` S ) ) ) |
36 |
9 16 34 35
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( S ( .r ` F ) ( N ` S ) ) = ( S o. ( N ` S ) ) ) |
37 |
11
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` F ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) ) |
38 |
|
eqid |
|- ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( 1r ` ( ( EDRing ` K ) ` W ) ) |
39 |
2 3 10 38
|
erng1r |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` ( ( EDRing ` K ) ` W ) ) = ( _I |` T ) ) |
40 |
37 39
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( 1r ` F ) = ( _I |` T ) ) |
41 |
9 40
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( 1r ` F ) = ( _I |` T ) ) |
42 |
32 36 41
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( S o. ( N ` S ) ) = ( _I |` T ) ) |