Metamath Proof Explorer


Theorem tendolinv

Description: Left multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses tendoinv.b B=BaseK
tendoinv.h H=LHypK
tendoinv.t T=LTrnKW
tendoinv.e E=TEndoKW
tendoinv.o O=hTIB
tendoinv.u U=DVecHKW
tendoinv.f F=ScalarU
tendoinv.n N=invrF
Assertion tendolinv KHLWHSESONSS=IT

Proof

Step Hyp Ref Expression
1 tendoinv.b B=BaseK
2 tendoinv.h H=LHypK
3 tendoinv.t T=LTrnKW
4 tendoinv.e E=TEndoKW
5 tendoinv.o O=hTIB
6 tendoinv.u U=DVecHKW
7 tendoinv.f F=ScalarU
8 tendoinv.n N=invrF
9 simp1 KHLWHSESOKHLWH
10 eqid EDRingKW=EDRingKW
11 2 10 6 7 dvhsca KHLWHF=EDRingKW
12 9 11 syl KHLWHSESOF=EDRingKW
13 2 10 erngdv KHLWHEDRingKWDivRing
14 9 13 syl KHLWHSESOEDRingKWDivRing
15 12 14 eqeltrd KHLWHSESOFDivRing
16 simp2 KHLWHSESOSE
17 eqid BaseF=BaseF
18 2 4 6 7 17 dvhbase KHLWHBaseF=E
19 9 18 syl KHLWHSESOBaseF=E
20 16 19 eleqtrrd KHLWHSESOSBaseF
21 simp3 KHLWHSESOSO
22 11 fveq2d KHLWH0F=0EDRingKW
23 eqid 0EDRingKW=0EDRingKW
24 1 2 3 10 5 23 erng0g KHLWH0EDRingKW=O
25 22 24 eqtrd KHLWH0F=O
26 9 25 syl KHLWHSESO0F=O
27 21 26 neeqtrrd KHLWHSESOS0F
28 eqid 0F=0F
29 eqid F=F
30 eqid 1F=1F
31 17 28 29 30 8 drnginvrl FDivRingSBaseFS0FNSFS=1F
32 15 20 27 31 syl3anc KHLWHSESONSFS=1F
33 1 2 3 4 5 6 7 8 tendoinvcl KHLWHSESONSENSO
34 33 simpld KHLWHSESONSE
35 2 3 4 6 7 29 dvhmulr KHLWHNSESENSFS=NSS
36 9 34 16 35 syl12anc KHLWHSESONSFS=NSS
37 11 fveq2d KHLWH1F=1EDRingKW
38 eqid 1EDRingKW=1EDRingKW
39 2 3 10 38 erng1r KHLWH1EDRingKW=IT
40 37 39 eqtrd KHLWH1F=IT
41 9 40 syl KHLWHSESO1F=IT
42 32 36 41 3eqtr3d KHLWHSESONSS=IT