| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicvscacl.l |  | 
						
							| 2 |  | dicvscacl.a |  | 
						
							| 3 |  | dicvscacl.h |  | 
						
							| 4 |  | dicvscacl.e |  | 
						
							| 5 |  | dicvscacl.u |  | 
						
							| 6 |  | dicvscacl.i |  | 
						
							| 7 |  | dicvscacl.s |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp3l |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 2 3 6 5 10 | dicssdvh |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 3 12 4 5 10 | dvhvbase |  | 
						
							| 14 | 13 | eqcomd |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 11 15 | sseqtrrd |  | 
						
							| 17 | 16 | 3adant3 |  | 
						
							| 18 |  | simp3r |  | 
						
							| 19 | 17 18 | sseldd |  | 
						
							| 20 | 3 12 4 5 7 | dvhvsca |  | 
						
							| 21 | 8 9 19 20 | syl12anc |  | 
						
							| 22 |  | fvi |  | 
						
							| 23 | 9 22 | syl |  | 
						
							| 24 | 23 | coeq1d |  | 
						
							| 25 | 24 | opeq2d |  | 
						
							| 26 | 21 25 | eqtr4d |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 1 2 3 27 12 6 | dicelval1sta |  | 
						
							| 29 | 28 | 3adant3l |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 1 2 3 4 6 | dicelval2nd |  | 
						
							| 32 | 31 | 3adant3l |  | 
						
							| 33 | 3 12 4 | tendof |  | 
						
							| 34 | 8 32 33 | syl2anc |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 1 35 2 3 | lhpocnel |  | 
						
							| 37 | 36 | 3ad2ant1 |  | 
						
							| 38 |  | simp2 |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 1 2 3 12 39 | ltrniotacl |  | 
						
							| 41 | 8 37 38 40 | syl3anc |  | 
						
							| 42 |  | fvco3 |  | 
						
							| 43 | 34 41 42 | syl2anc |  | 
						
							| 44 | 30 43 | eqtr4d |  | 
						
							| 45 | 24 | fveq1d |  | 
						
							| 46 | 44 45 | eqtr4d |  | 
						
							| 47 | 3 4 | tendococl |  | 
						
							| 48 | 8 9 32 47 | syl3anc |  | 
						
							| 49 | 24 48 | eqeltrd |  | 
						
							| 50 |  | fvex |  | 
						
							| 51 |  | fvex |  | 
						
							| 52 |  | fvex |  | 
						
							| 53 | 51 52 | coex |  | 
						
							| 54 | 1 2 3 27 12 4 6 50 53 | dicopelval |  | 
						
							| 55 | 54 | 3adant3 |  | 
						
							| 56 | 46 49 55 | mpbir2and |  | 
						
							| 57 | 26 56 | eqeltrd |  |