| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dicvscacl.l |
|
| 2 |
|
dicvscacl.a |
|
| 3 |
|
dicvscacl.h |
|
| 4 |
|
dicvscacl.e |
|
| 5 |
|
dicvscacl.u |
|
| 6 |
|
dicvscacl.i |
|
| 7 |
|
dicvscacl.s |
|
| 8 |
|
simp1 |
|
| 9 |
|
simp3l |
|
| 10 |
|
eqid |
|
| 11 |
1 2 3 6 5 10
|
dicssdvh |
|
| 12 |
|
eqid |
|
| 13 |
3 12 4 5 10
|
dvhvbase |
|
| 14 |
13
|
eqcomd |
|
| 15 |
14
|
adantr |
|
| 16 |
11 15
|
sseqtrrd |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
simp3r |
|
| 19 |
17 18
|
sseldd |
|
| 20 |
3 12 4 5 7
|
dvhvsca |
|
| 21 |
8 9 19 20
|
syl12anc |
|
| 22 |
|
fvi |
|
| 23 |
9 22
|
syl |
|
| 24 |
23
|
coeq1d |
|
| 25 |
24
|
opeq2d |
|
| 26 |
21 25
|
eqtr4d |
|
| 27 |
|
eqid |
|
| 28 |
1 2 3 27 12 6
|
dicelval1sta |
|
| 29 |
28
|
3adant3l |
|
| 30 |
29
|
fveq2d |
|
| 31 |
1 2 3 4 6
|
dicelval2nd |
|
| 32 |
31
|
3adant3l |
|
| 33 |
3 12 4
|
tendof |
|
| 34 |
8 32 33
|
syl2anc |
|
| 35 |
|
eqid |
|
| 36 |
1 35 2 3
|
lhpocnel |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
|
simp2 |
|
| 39 |
|
eqid |
|
| 40 |
1 2 3 12 39
|
ltrniotacl |
|
| 41 |
8 37 38 40
|
syl3anc |
|
| 42 |
|
fvco3 |
|
| 43 |
34 41 42
|
syl2anc |
|
| 44 |
30 43
|
eqtr4d |
|
| 45 |
24
|
fveq1d |
|
| 46 |
44 45
|
eqtr4d |
|
| 47 |
3 4
|
tendococl |
|
| 48 |
8 9 32 47
|
syl3anc |
|
| 49 |
24 48
|
eqeltrd |
|
| 50 |
|
fvex |
|
| 51 |
|
fvex |
|
| 52 |
|
fvex |
|
| 53 |
51 52
|
coex |
|
| 54 |
1 2 3 27 12 4 6 50 53
|
dicopelval |
|
| 55 |
54
|
3adant3 |
|
| 56 |
46 49 55
|
mpbir2and |
|
| 57 |
26 56
|
eqeltrd |
|