| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dicelval2nd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dicelval2nd.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
dicelval2nd.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dicelval2nd.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dicelval2nd.i |
⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 8 |
1 2 3 5 6 7
|
dicssdvh |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 9 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
3 9 4 6 7
|
dvhvbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × 𝐸 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × 𝐸 ) ) |
| 12 |
8 11
|
sseqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × 𝐸 ) ) |
| 13 |
12
|
sseld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼 ‘ 𝑄 ) → 𝑌 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × 𝐸 ) ) ) |
| 14 |
13
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑄 ) ) → 𝑌 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × 𝐸 ) ) |
| 15 |
|
xp2nd |
⊢ ( 𝑌 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × 𝐸 ) → ( 2nd ‘ 𝑌 ) ∈ 𝐸 ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑄 ) ) → ( 2nd ‘ 𝑌 ) ∈ 𝐸 ) |