Metamath Proof Explorer


Theorem diclss

Description: The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses diclss.l ˙ = K
diclss.a A = Atoms K
diclss.h H = LHyp K
diclss.u U = DVecH K W
diclss.i I = DIsoC K W
diclss.s S = LSubSp U
Assertion diclss K HL W H Q A ¬ Q ˙ W I Q S

Proof

Step Hyp Ref Expression
1 diclss.l ˙ = K
2 diclss.a A = Atoms K
3 diclss.h H = LHyp K
4 diclss.u U = DVecH K W
5 diclss.i I = DIsoC K W
6 diclss.s S = LSubSp U
7 eqidd K HL W H Q A ¬ Q ˙ W Scalar U = Scalar U
8 eqid TEndo K W = TEndo K W
9 eqid Scalar U = Scalar U
10 eqid Base Scalar U = Base Scalar U
11 3 8 4 9 10 dvhbase K HL W H Base Scalar U = TEndo K W
12 11 eqcomd K HL W H TEndo K W = Base Scalar U
13 12 adantr K HL W H Q A ¬ Q ˙ W TEndo K W = Base Scalar U
14 eqid LTrn K W = LTrn K W
15 eqid Base U = Base U
16 3 14 8 4 15 dvhvbase K HL W H Base U = LTrn K W × TEndo K W
17 16 eqcomd K HL W H LTrn K W × TEndo K W = Base U
18 17 adantr K HL W H Q A ¬ Q ˙ W LTrn K W × TEndo K W = Base U
19 eqidd K HL W H Q A ¬ Q ˙ W + U = + U
20 eqidd K HL W H Q A ¬ Q ˙ W U = U
21 6 a1i K HL W H Q A ¬ Q ˙ W S = LSubSp U
22 1 2 3 5 4 15 dicssdvh K HL W H Q A ¬ Q ˙ W I Q Base U
23 22 18 sseqtrrd K HL W H Q A ¬ Q ˙ W I Q LTrn K W × TEndo K W
24 1 2 3 5 dicn0 K HL W H Q A ¬ Q ˙ W I Q
25 simpll K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q b I Q K HL W H
26 simplr K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q b I Q Q A ¬ Q ˙ W
27 simpr1 K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q b I Q x TEndo K W
28 simpr2 K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q b I Q a I Q
29 eqid U = U
30 1 2 3 8 4 5 29 dicvscacl K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q x U a I Q
31 25 26 27 28 30 syl112anc K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q b I Q x U a I Q
32 simpr3 K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q b I Q b I Q
33 eqid + U = + U
34 1 2 3 4 5 33 dicvaddcl K HL W H Q A ¬ Q ˙ W x U a I Q b I Q x U a + U b I Q
35 25 26 31 32 34 syl112anc K HL W H Q A ¬ Q ˙ W x TEndo K W a I Q b I Q x U a + U b I Q
36 7 13 18 19 20 21 23 24 35 islssd K HL W H Q A ¬ Q ˙ W I Q S