Metamath Proof Explorer


Theorem diclspsn

Description: The value of isomorphism C is spanned by vector F . Part of proof of Lemma N of Crawley p. 121 line 29. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses diclspsn.l ˙=K
diclspsn.a A=AtomsK
diclspsn.h H=LHypK
diclspsn.p P=ocKW
diclspsn.t T=LTrnKW
diclspsn.i I=DIsoCKW
diclspsn.u U=DVecHKW
diclspsn.n N=LSpanU
diclspsn.f F=ιfT|fP=Q
Assertion diclspsn KHLWHQA¬Q˙WIQ=NFIT

Proof

Step Hyp Ref Expression
1 diclspsn.l ˙=K
2 diclspsn.a A=AtomsK
3 diclspsn.h H=LHypK
4 diclspsn.p P=ocKW
5 diclspsn.t T=LTrnKW
6 diclspsn.i I=DIsoCKW
7 diclspsn.u U=DVecHKW
8 diclspsn.n N=LSpanU
9 diclspsn.f F=ιfT|fP=Q
10 df-rab vT×TEndoKW|xBaseScalarUv=xUFIT=v|vT×TEndoKWxBaseScalarUv=xUFIT
11 relopabv Relyz|y=zFzTEndoKW
12 eqid TEndoKW=TEndoKW
13 1 2 3 4 5 12 6 9 dicval2 KHLWHQA¬Q˙WIQ=yz|y=zFzTEndoKW
14 13 releqd KHLWHQA¬Q˙WRelIQRelyz|y=zFzTEndoKW
15 11 14 mpbiri KHLWHQA¬Q˙WRelIQ
16 ssrab2 vT×TEndoKW|xBaseScalarUv=xUFITT×TEndoKW
17 relxp RelT×TEndoKW
18 relss vT×TEndoKW|xBaseScalarUv=xUFITT×TEndoKWRelT×TEndoKWRelvT×TEndoKW|xBaseScalarUv=xUFIT
19 16 17 18 mp2 RelvT×TEndoKW|xBaseScalarUv=xUFIT
20 19 a1i KHLWHQA¬Q˙WRelvT×TEndoKW|xBaseScalarUv=xUFIT
21 id KHLWHQA¬Q˙WKHLWHQA¬Q˙W
22 vex gV
23 vex sV
24 1 2 3 4 5 12 6 9 22 23 dicopelval2 KHLWHQA¬Q˙WgsIQg=sFsTEndoKW
25 simprl KHLWHQA¬Q˙Wg=sFsTEndoKWg=sF
26 simpll KHLWHQA¬Q˙Wg=sFsTEndoKWKHLWH
27 simprr KHLWHQA¬Q˙Wg=sFsTEndoKWsTEndoKW
28 simpl KHLWHQA¬Q˙WKHLWH
29 1 2 3 4 lhpocnel2 KHLWHPA¬P˙W
30 29 adantr KHLWHQA¬Q˙WPA¬P˙W
31 simpr KHLWHQA¬Q˙WQA¬Q˙W
32 1 2 3 5 9 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
33 28 30 31 32 syl3anc KHLWHQA¬Q˙WFT
34 33 adantr KHLWHQA¬Q˙Wg=sFsTEndoKWFT
35 3 5 12 tendocl KHLWHsTEndoKWFTsFT
36 26 27 34 35 syl3anc KHLWHQA¬Q˙Wg=sFsTEndoKWsFT
37 25 36 eqeltrd KHLWHQA¬Q˙Wg=sFsTEndoKWgT
38 37 27 25 3jca KHLWHQA¬Q˙Wg=sFsTEndoKWgTsTEndoKWg=sF
39 simpr3 KHLWHQA¬Q˙WgTsTEndoKWg=sFg=sF
40 simpr2 KHLWHQA¬Q˙WgTsTEndoKWg=sFsTEndoKW
41 39 40 jca KHLWHQA¬Q˙WgTsTEndoKWg=sFg=sFsTEndoKW
42 38 41 impbida KHLWHQA¬Q˙Wg=sFsTEndoKWgTsTEndoKWg=sF
43 eqid ScalarU=ScalarU
44 eqid BaseScalarU=BaseScalarU
45 3 12 7 43 44 dvhbase KHLWHBaseScalarU=TEndoKW
46 45 adantr KHLWHQA¬Q˙WBaseScalarU=TEndoKW
47 46 rexeqdv KHLWHQA¬Q˙WxBaseScalarUgs=xUFITxTEndoKWgs=xUFIT
48 simpll KHLWHQA¬Q˙WxTEndoKWKHLWH
49 simpr KHLWHQA¬Q˙WxTEndoKWxTEndoKW
50 33 adantr KHLWHQA¬Q˙WxTEndoKWFT
51 3 5 12 tendoidcl KHLWHITTEndoKW
52 51 ad2antrr KHLWHQA¬Q˙WxTEndoKWITTEndoKW
53 eqid U=U
54 3 5 12 7 53 dvhopvsca KHLWHxTEndoKWFTITTEndoKWxUFIT=xFxIT
55 48 49 50 52 54 syl13anc KHLWHQA¬Q˙WxTEndoKWxUFIT=xFxIT
56 55 eqeq2d KHLWHQA¬Q˙WxTEndoKWgs=xUFITgs=xFxIT
57 22 23 opth gs=xFxITg=xFs=xIT
58 56 57 bitrdi KHLWHQA¬Q˙WxTEndoKWgs=xUFITg=xFs=xIT
59 3 5 12 tendo1mulr KHLWHxTEndoKWxIT=x
60 59 adantlr KHLWHQA¬Q˙WxTEndoKWxIT=x
61 60 eqeq2d KHLWHQA¬Q˙WxTEndoKWs=xITs=x
62 equcom s=xx=s
63 61 62 bitrdi KHLWHQA¬Q˙WxTEndoKWs=xITx=s
64 63 anbi2d KHLWHQA¬Q˙WxTEndoKWg=xFs=xITg=xFx=s
65 58 64 bitrd KHLWHQA¬Q˙WxTEndoKWgs=xUFITg=xFx=s
66 ancom g=xFx=sx=sg=xF
67 65 66 bitrdi KHLWHQA¬Q˙WxTEndoKWgs=xUFITx=sg=xF
68 67 rexbidva KHLWHQA¬Q˙WxTEndoKWgs=xUFITxTEndoKWx=sg=xF
69 47 68 bitrd KHLWHQA¬Q˙WxBaseScalarUgs=xUFITxTEndoKWx=sg=xF
70 69 3anbi3d KHLWHQA¬Q˙WgTsTEndoKWxBaseScalarUgs=xUFITgTsTEndoKWxTEndoKWx=sg=xF
71 fveq1 x=sxF=sF
72 71 eqeq2d x=sg=xFg=sF
73 72 ceqsrexv sTEndoKWxTEndoKWx=sg=xFg=sF
74 73 pm5.32i sTEndoKWxTEndoKWx=sg=xFsTEndoKWg=sF
75 74 anbi2i gTsTEndoKWxTEndoKWx=sg=xFgTsTEndoKWg=sF
76 3anass gTsTEndoKWxTEndoKWx=sg=xFgTsTEndoKWxTEndoKWx=sg=xF
77 3anass gTsTEndoKWg=sFgTsTEndoKWg=sF
78 75 76 77 3bitr4i gTsTEndoKWxTEndoKWx=sg=xFgTsTEndoKWg=sF
79 70 78 bitr2di KHLWHQA¬Q˙WgTsTEndoKWg=sFgTsTEndoKWxBaseScalarUgs=xUFIT
80 42 79 bitrd KHLWHQA¬Q˙Wg=sFsTEndoKWgTsTEndoKWxBaseScalarUgs=xUFIT
81 eqeq1 v=gsv=xUFITgs=xUFIT
82 81 rexbidv v=gsxBaseScalarUv=xUFITxBaseScalarUgs=xUFIT
83 82 rabxp vT×TEndoKW|xBaseScalarUv=xUFIT=gs|gTsTEndoKWxBaseScalarUgs=xUFIT
84 83 eleq2i gsvT×TEndoKW|xBaseScalarUv=xUFITgsgs|gTsTEndoKWxBaseScalarUgs=xUFIT
85 opabidw gsgs|gTsTEndoKWxBaseScalarUgs=xUFITgTsTEndoKWxBaseScalarUgs=xUFIT
86 84 85 bitr2i gTsTEndoKWxBaseScalarUgs=xUFITgsvT×TEndoKW|xBaseScalarUv=xUFIT
87 80 86 bitrdi KHLWHQA¬Q˙Wg=sFsTEndoKWgsvT×TEndoKW|xBaseScalarUv=xUFIT
88 24 87 bitrd KHLWHQA¬Q˙WgsIQgsvT×TEndoKW|xBaseScalarUv=xUFIT
89 88 eqrelrdv2 RelIQRelvT×TEndoKW|xBaseScalarUv=xUFITKHLWHQA¬Q˙WIQ=vT×TEndoKW|xBaseScalarUv=xUFIT
90 15 20 21 89 syl21anc KHLWHQA¬Q˙WIQ=vT×TEndoKW|xBaseScalarUv=xUFIT
91 simpll KHLWHQA¬Q˙WxBaseScalarUKHLWH
92 46 eleq2d KHLWHQA¬Q˙WxBaseScalarUxTEndoKW
93 92 biimpa KHLWHQA¬Q˙WxBaseScalarUxTEndoKW
94 51 adantr KHLWHQA¬Q˙WITTEndoKW
95 opelxpi FTITTEndoKWFITT×TEndoKW
96 33 94 95 syl2anc KHLWHQA¬Q˙WFITT×TEndoKW
97 96 adantr KHLWHQA¬Q˙WxBaseScalarUFITT×TEndoKW
98 3 5 12 7 53 dvhvscacl KHLWHxTEndoKWFITT×TEndoKWxUFITT×TEndoKW
99 91 93 97 98 syl12anc KHLWHQA¬Q˙WxBaseScalarUxUFITT×TEndoKW
100 eleq1a xUFITT×TEndoKWv=xUFITvT×TEndoKW
101 99 100 syl KHLWHQA¬Q˙WxBaseScalarUv=xUFITvT×TEndoKW
102 101 rexlimdva KHLWHQA¬Q˙WxBaseScalarUv=xUFITvT×TEndoKW
103 102 pm4.71rd KHLWHQA¬Q˙WxBaseScalarUv=xUFITvT×TEndoKWxBaseScalarUv=xUFIT
104 103 abbidv KHLWHQA¬Q˙Wv|xBaseScalarUv=xUFIT=v|vT×TEndoKWxBaseScalarUv=xUFIT
105 10 90 104 3eqtr4a KHLWHQA¬Q˙WIQ=v|xBaseScalarUv=xUFIT
106 3 7 28 dvhlmod KHLWHQA¬Q˙WULMod
107 eqid BaseU=BaseU
108 3 5 12 7 107 dvhelvbasei KHLWHFTITTEndoKWFITBaseU
109 28 33 94 108 syl12anc KHLWHQA¬Q˙WFITBaseU
110 43 44 107 53 8 lspsn ULModFITBaseUNFIT=v|xBaseScalarUv=xUFIT
111 106 109 110 syl2anc KHLWHQA¬Q˙WNFIT=v|xBaseScalarUv=xUFIT
112 105 111 eqtr4d KHLWHQA¬Q˙WIQ=NFIT