Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn2.b |
|
2 |
|
cdlemn2.l |
|
3 |
|
cdlemn2.j |
|
4 |
|
cdlemn2.a |
|
5 |
|
cdlemn2.h |
|
6 |
|
cdlemn2.t |
|
7 |
|
cdlemn2.r |
|
8 |
|
cdlemn2.f |
|
9 |
|
simp1 |
|
10 |
|
simp21 |
|
11 |
|
simp22 |
|
12 |
2 4 5 6 8
|
ltrniotacl |
|
13 |
9 10 11 12
|
syl3anc |
|
14 |
|
eqid |
|
15 |
2 3 14 4 5 6 7
|
trlval2 |
|
16 |
9 13 10 15
|
syl3anc |
|
17 |
2 4 5 6 8
|
ltrniotaval |
|
18 |
9 10 11 17
|
syl3anc |
|
19 |
18
|
oveq2d |
|
20 |
19
|
oveq1d |
|
21 |
16 20
|
eqtrd |
|
22 |
|
simp1l |
|
23 |
22
|
hllatd |
|
24 |
|
simp21l |
|
25 |
1 4
|
atbase |
|
26 |
24 25
|
syl |
|
27 |
|
simp23l |
|
28 |
1 2 3
|
latlej1 |
|
29 |
23 26 27 28
|
syl3anc |
|
30 |
|
simp3 |
|
31 |
|
simp22l |
|
32 |
1 4
|
atbase |
|
33 |
31 32
|
syl |
|
34 |
1 3
|
latjcl |
|
35 |
23 26 27 34
|
syl3anc |
|
36 |
1 2 3
|
latjle12 |
|
37 |
23 26 33 35 36
|
syl13anc |
|
38 |
29 30 37
|
mpbi2and |
|
39 |
1 3 4
|
hlatjcl |
|
40 |
22 24 31 39
|
syl3anc |
|
41 |
|
simp1r |
|
42 |
1 5
|
lhpbase |
|
43 |
41 42
|
syl |
|
44 |
1 2 14
|
latmlem1 |
|
45 |
23 40 35 43 44
|
syl13anc |
|
46 |
38 45
|
mpd |
|
47 |
21 46
|
eqbrtrd |
|
48 |
|
simp23 |
|
49 |
1 2 3 14 4 5
|
lhple |
|
50 |
9 10 48 49
|
syl3anc |
|
51 |
47 50
|
breqtrd |
|