Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemn2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemn2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemn2.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑄 ) = 𝑆 ) |
9 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
11 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
12 |
2 4 5 6 8
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝐹 ∈ 𝑇 ) |
14 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
15 |
2 3 14 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
16 |
9 13 10 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
17 |
2 4 5 6 8
|
ltrniotaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑄 ) = 𝑆 ) |
18 |
9 10 11 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐹 ‘ 𝑄 ) = 𝑆 ) |
19 |
18
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ 𝑆 ) ) |
20 |
19
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
21 |
16 20
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
22 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝐾 ∈ HL ) |
23 |
22
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝐾 ∈ Lat ) |
24 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑄 ∈ 𝐴 ) |
25 |
1 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑄 ∈ 𝐵 ) |
27 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
28 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑋 ) ) |
29 |
23 26 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑋 ) ) |
30 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) |
31 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑆 ∈ 𝐴 ) |
32 |
1 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐵 ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑆 ∈ 𝐵 ) |
34 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑋 ) ∈ 𝐵 ) |
35 |
23 26 27 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑄 ∨ 𝑋 ) ∈ 𝐵 ) |
36 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵 ∧ ( 𝑄 ∨ 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑄 ≤ ( 𝑄 ∨ 𝑋 ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) ↔ ( 𝑄 ∨ 𝑆 ) ≤ ( 𝑄 ∨ 𝑋 ) ) ) |
37 |
23 26 33 35 36
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝑄 ≤ ( 𝑄 ∨ 𝑋 ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) ↔ ( 𝑄 ∨ 𝑆 ) ≤ ( 𝑄 ∨ 𝑋 ) ) ) |
38 |
29 30 37
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑄 ∨ 𝑆 ) ≤ ( 𝑄 ∨ 𝑋 ) ) |
39 |
1 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ) |
40 |
22 24 31 39
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ) |
41 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑊 ∈ 𝐻 ) |
42 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
43 |
41 42
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑊 ∈ 𝐵 ) |
44 |
1 2 14
|
latmlem1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ∧ ( 𝑄 ∨ 𝑋 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑄 ∨ 𝑆 ) ≤ ( 𝑄 ∨ 𝑋 ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ ( ( 𝑄 ∨ 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
45 |
23 40 35 43 44
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝑄 ∨ 𝑆 ) ≤ ( 𝑄 ∨ 𝑋 ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ ( ( 𝑄 ∨ 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
46 |
38 45
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ ( ( 𝑄 ∨ 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
47 |
21 46
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ ( ( 𝑄 ∨ 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
48 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
49 |
1 2 3 14 4 5
|
lhple |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( 𝑄 ∨ 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) = 𝑋 ) |
50 |
9 10 48 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝑄 ∨ 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) = 𝑋 ) |
51 |
47 50
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) |