Metamath Proof Explorer


Theorem cdlemn2

Description: Part of proof of Lemma N of Crawley p. 121 line 30. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses cdlemn2.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn2.l = ( le ‘ 𝐾 )
cdlemn2.j = ( join ‘ 𝐾 )
cdlemn2.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn2.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn2.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemn2.f 𝐹 = ( 𝑇 ( 𝑄 ) = 𝑆 )
Assertion cdlemn2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) 𝑋 )

Proof

Step Hyp Ref Expression
1 cdlemn2.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn2.l = ( le ‘ 𝐾 )
3 cdlemn2.j = ( join ‘ 𝐾 )
4 cdlemn2.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn2.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn2.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemn2.f 𝐹 = ( 𝑇 ( 𝑄 ) = 𝑆 )
9 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
11 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
12 2 4 5 6 8 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) → 𝐹𝑇 )
13 9 10 11 12 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝐹𝑇 )
14 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
15 2 3 14 4 5 6 7 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑅𝐹 ) = ( ( 𝑄 ( 𝐹𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
16 9 13 10 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) = ( ( 𝑄 ( 𝐹𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
17 2 4 5 6 8 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) → ( 𝐹𝑄 ) = 𝑆 )
18 9 10 11 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝐹𝑄 ) = 𝑆 )
19 18 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑄 ( 𝐹𝑄 ) ) = ( 𝑄 𝑆 ) )
20 19 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( ( 𝑄 ( 𝐹𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) )
21 16 20 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) = ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) )
22 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝐾 ∈ HL )
23 22 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝐾 ∈ Lat )
24 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑄𝐴 )
25 1 4 atbase ( 𝑄𝐴𝑄𝐵 )
26 24 25 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑄𝐵 )
27 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑋𝐵 )
28 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵 ) → 𝑄 ( 𝑄 𝑋 ) )
29 23 26 27 28 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑄 ( 𝑄 𝑋 ) )
30 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑆 ( 𝑄 𝑋 ) )
31 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑆𝐴 )
32 1 4 atbase ( 𝑆𝐴𝑆𝐵 )
33 31 32 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑆𝐵 )
34 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵 ) → ( 𝑄 𝑋 ) ∈ 𝐵 )
35 23 26 27 34 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑄 𝑋 ) ∈ 𝐵 )
36 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑄𝐵𝑆𝐵 ∧ ( 𝑄 𝑋 ) ∈ 𝐵 ) ) → ( ( 𝑄 ( 𝑄 𝑋 ) ∧ 𝑆 ( 𝑄 𝑋 ) ) ↔ ( 𝑄 𝑆 ) ( 𝑄 𝑋 ) ) )
37 23 26 33 35 36 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( ( 𝑄 ( 𝑄 𝑋 ) ∧ 𝑆 ( 𝑄 𝑋 ) ) ↔ ( 𝑄 𝑆 ) ( 𝑄 𝑋 ) ) )
38 29 30 37 mpbi2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑄 𝑆 ) ( 𝑄 𝑋 ) )
39 1 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴 ) → ( 𝑄 𝑆 ) ∈ 𝐵 )
40 22 24 31 39 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑄 𝑆 ) ∈ 𝐵 )
41 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑊𝐻 )
42 1 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
43 41 42 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝑊𝐵 )
44 1 2 14 latmlem1 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 𝑆 ) ∈ 𝐵 ∧ ( 𝑄 𝑋 ) ∈ 𝐵𝑊𝐵 ) ) → ( ( 𝑄 𝑆 ) ( 𝑄 𝑋 ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ( ( 𝑄 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
45 23 40 35 43 44 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( ( 𝑄 𝑆 ) ( 𝑄 𝑋 ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ( ( 𝑄 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
46 38 45 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ( ( 𝑄 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) )
47 21 46 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) ( ( 𝑄 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) )
48 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑋𝐵𝑋 𝑊 ) )
49 1 2 3 14 4 5 lhple ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( 𝑄 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) = 𝑋 )
50 9 10 48 49 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( ( 𝑄 𝑋 ) ( meet ‘ 𝐾 ) 𝑊 ) = 𝑋 )
51 47 50 breqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) 𝑋 )