Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn2a.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn2a.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn2a.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemn2a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemn2a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn2a.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn2a.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemn2a.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
9 |
|
cdlemn2a.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
cdlemn2a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
cdlemn2a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
12 |
|
cdlemn2a.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑄 ) = 𝑆 ) |
13 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
15 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
16 |
2 4 5 6 12
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝐹 ∈ 𝑇 ) |
18 |
1 5 6 7 8 10 9 11
|
dib1dim2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) ) |
19 |
13 17 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) ) |
20 |
1 2 3 4 5 6 7 12
|
cdlemn2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) |
21 |
1 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
22 |
13 17 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
23 |
2 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
24 |
13 17 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
25 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
26 |
1 2 5 9
|
dibord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) ) |
27 |
13 22 24 25 26
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) ) |
28 |
20 27
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ) |
29 |
19 28
|
eqsstrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) ⊆ ( 𝐼 ‘ 𝑋 ) ) |