Metamath Proof Explorer


Theorem cdlemn2a

Description: Part of proof of Lemma N of Crawley p. 121. (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses cdlemn2a.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn2a.l = ( le ‘ 𝐾 )
cdlemn2a.j = ( join ‘ 𝐾 )
cdlemn2a.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn2a.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn2a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn2a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemn2a.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
cdlemn2a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
cdlemn2a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
cdlemn2a.n 𝑁 = ( LSpan ‘ 𝑈 )
cdlemn2a.f 𝐹 = ( 𝑇 ( 𝑄 ) = 𝑆 )
Assertion cdlemn2a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑁 ‘ { ⟨ 𝐹 , 𝑂 ⟩ } ) ⊆ ( 𝐼𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdlemn2a.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn2a.l = ( le ‘ 𝐾 )
3 cdlemn2a.j = ( join ‘ 𝐾 )
4 cdlemn2a.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn2a.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn2a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn2a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemn2a.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
9 cdlemn2a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
10 cdlemn2a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
11 cdlemn2a.n 𝑁 = ( LSpan ‘ 𝑈 )
12 cdlemn2a.f 𝐹 = ( 𝑇 ( 𝑄 ) = 𝑆 )
13 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
15 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
16 2 4 5 6 12 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) → 𝐹𝑇 )
17 13 14 15 16 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → 𝐹𝑇 )
18 1 5 6 7 8 10 9 11 dib1dim2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝐼 ‘ ( 𝑅𝐹 ) ) = ( 𝑁 ‘ { ⟨ 𝐹 , 𝑂 ⟩ } ) )
19 13 17 18 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝐼 ‘ ( 𝑅𝐹 ) ) = ( 𝑁 ‘ { ⟨ 𝐹 , 𝑂 ⟩ } ) )
20 1 2 3 4 5 6 7 12 cdlemn2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) 𝑋 )
21 1 5 6 7 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) ∈ 𝐵 )
22 13 17 21 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) ∈ 𝐵 )
23 2 5 6 7 trlle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) 𝑊 )
24 13 17 23 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑅𝐹 ) 𝑊 )
25 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑋𝐵𝑋 𝑊 ) )
26 1 2 5 9 dibord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐹 ) ∈ 𝐵 ∧ ( 𝑅𝐹 ) 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑅𝐹 ) ) ⊆ ( 𝐼𝑋 ) ↔ ( 𝑅𝐹 ) 𝑋 ) )
27 13 22 24 25 26 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( ( 𝐼 ‘ ( 𝑅𝐹 ) ) ⊆ ( 𝐼𝑋 ) ↔ ( 𝑅𝐹 ) 𝑋 ) )
28 20 27 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝐼 ‘ ( 𝑅𝐹 ) ) ⊆ ( 𝐼𝑋 ) )
29 19 28 eqsstrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑆 ( 𝑄 𝑋 ) ) → ( 𝑁 ‘ { ⟨ 𝐹 , 𝑂 ⟩ } ) ⊆ ( 𝐼𝑋 ) )