Step |
Hyp |
Ref |
Expression |
1 |
|
dib1dim2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dib1dim2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dib1dim2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dib1dim2.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dib1dim2.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
6 |
|
dib1dim2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dib1dim2.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dib1dim2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
9 |
|
df-rab |
⊢ { 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 } = { 𝑢 ∣ ( 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) } |
10 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
1 2 3 4 10 5 7
|
dib1dim |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = { 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 } ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
14 |
2 10 6 12 13
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
16 |
15
|
rexeqdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) ↔ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) ) ) |
17 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
18 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
20 |
1 2 3 10 5
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
22 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
23 |
2 3 10 6 22
|
dvhopvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) = 〈 ( 𝑣 ‘ 𝐹 ) , ( 𝑣 ∘ 𝑂 ) 〉 ) |
24 |
17 18 19 21 23
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) = 〈 ( 𝑣 ‘ 𝐹 ) , ( 𝑣 ∘ 𝑂 ) 〉 ) |
25 |
1 2 3 10 5
|
tendo0mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑣 ∘ 𝑂 ) = 𝑂 ) |
26 |
25
|
adantlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑣 ∘ 𝑂 ) = 𝑂 ) |
27 |
26
|
opeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 〈 ( 𝑣 ‘ 𝐹 ) , ( 𝑣 ∘ 𝑂 ) 〉 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) |
28 |
24 27
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) |
29 |
28
|
eqeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) ↔ 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) ) |
30 |
29
|
rexbidva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) ↔ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) ) |
31 |
2 3 10
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑣 ‘ 𝐹 ) ∈ 𝑇 ) |
32 |
31
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑣 ‘ 𝐹 ) ∈ 𝑇 ) |
33 |
32
|
an32s |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑣 ‘ 𝐹 ) ∈ 𝑇 ) |
34 |
|
opelxpi |
⊢ ( ( ( 𝑣 ‘ 𝐹 ) ∈ 𝑇 ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
35 |
33 21 34
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
36 |
|
eleq1a |
⊢ ( 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 → 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 → 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
38 |
37
|
rexlimdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 → 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
39 |
38
|
pm4.71rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ↔ ( 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) ) ) |
40 |
16 30 39
|
3bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∃ 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) ↔ ( 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) ) ) |
41 |
40
|
abbidv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → { 𝑢 ∣ ∃ 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) } = { 𝑢 ∣ ( 𝑢 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑣 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 𝑢 = 〈 ( 𝑣 ‘ 𝐹 ) , 𝑂 〉 ) } ) |
42 |
9 11 41
|
3eqtr4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = { 𝑢 ∣ ∃ 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) } ) |
43 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
44 |
2 6 43
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝑈 ∈ LMod ) |
45 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑇 ) |
46 |
20
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
47 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
48 |
2 3 10 6 47
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 𝐹 , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) |
49 |
43 45 46 48
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 〈 𝐹 , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) |
50 |
12 13 47 22 8
|
lspsn |
⊢ ( ( 𝑈 ∈ LMod ∧ 〈 𝐹 , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) = { 𝑢 ∣ ∃ 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) } ) |
51 |
44 49 50
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) = { 𝑢 ∣ ∃ 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑢 = ( 𝑣 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , 𝑂 〉 ) } ) |
52 |
42 51
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) ) |