Metamath Proof Explorer


Theorem dibss

Description: The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014)

Ref Expression
Hypotheses dibss.b 𝐵 = ( Base ‘ 𝐾 )
dibss.l = ( le ‘ 𝐾 )
dibss.h 𝐻 = ( LHyp ‘ 𝐾 )
dibss.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dibss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dibss.v 𝑉 = ( Base ‘ 𝑈 )
Assertion dibss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ⊆ 𝑉 )

Proof

Step Hyp Ref Expression
1 dibss.b 𝐵 = ( Base ‘ 𝐾 )
2 dibss.l = ( le ‘ 𝐾 )
3 dibss.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dibss.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
5 dibss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dibss.v 𝑉 = ( Base ‘ 𝑈 )
7 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
9 1 2 3 7 8 diass ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
10 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) )
12 1 3 7 10 11 tendo0cl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
13 12 snssd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ⊆ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
14 13 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ⊆ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
15 xpss12 ( ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ⊆ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
16 9 14 15 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
17 1 2 3 7 11 8 4 dibval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) )
18 3 7 10 5 6 dvhvbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑉 = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
19 18 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → 𝑉 = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
20 16 17 19 3sstr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ⊆ 𝑉 )