Step |
Hyp |
Ref |
Expression |
1 |
|
dibss.b |
|- B = ( Base ` K ) |
2 |
|
dibss.l |
|- .<_ = ( le ` K ) |
3 |
|
dibss.h |
|- H = ( LHyp ` K ) |
4 |
|
dibss.i |
|- I = ( ( DIsoB ` K ) ` W ) |
5 |
|
dibss.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dibss.v |
|- V = ( Base ` U ) |
7 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
8 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
9 |
1 2 3 7 8
|
diass |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( DIsoA ` K ) ` W ) ` X ) C_ ( ( LTrn ` K ) ` W ) ) |
10 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
11 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
12 |
1 3 7 10 11
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) |
13 |
12
|
snssd |
|- ( ( K e. HL /\ W e. H ) -> { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } C_ ( ( TEndo ` K ) ` W ) ) |
14 |
13
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } C_ ( ( TEndo ` K ) ` W ) ) |
15 |
|
xpss12 |
|- ( ( ( ( ( DIsoA ` K ) ` W ) ` X ) C_ ( ( LTrn ` K ) ` W ) /\ { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } C_ ( ( TEndo ` K ) ` W ) ) -> ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
16 |
9 14 15
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
17 |
1 2 3 7 11 8 4
|
dibval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) ) |
18 |
3 7 10 5 6
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> V = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
19 |
18
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> V = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
20 |
16 17 19
|
3sstr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ V ) |