Step |
Hyp |
Ref |
Expression |
1 |
|
diblss.b |
|- B = ( Base ` K ) |
2 |
|
diblss.l |
|- .<_ = ( le ` K ) |
3 |
|
diblss.h |
|- H = ( LHyp ` K ) |
4 |
|
diblss.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
diblss.i |
|- I = ( ( DIsoB ` K ) ` W ) |
6 |
|
diblss.s |
|- S = ( LSubSp ` U ) |
7 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( Scalar ` U ) = ( Scalar ` U ) ) |
8 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
9 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
11 |
3 8 4 9 10
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
12 |
11
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( TEndo ` K ) ` W ) = ( Base ` ( Scalar ` U ) ) ) |
13 |
12
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( TEndo ` K ) ` W ) = ( Base ` ( Scalar ` U ) ) ) |
14 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
15 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
16 |
3 14 8 4 15
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
17 |
16
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) = ( Base ` U ) ) |
18 |
17
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) = ( Base ` U ) ) |
19 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( +g ` U ) = ( +g ` U ) ) |
20 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( .s ` U ) = ( .s ` U ) ) |
21 |
6
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> S = ( LSubSp ` U ) ) |
22 |
1 2 3 5 4 15
|
dibss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ ( Base ` U ) ) |
23 |
22 18
|
sseqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
24 |
1 2 3 5
|
dibn0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) =/= (/) ) |
25 |
|
fvex |
|- ( x ` ( 1st ` a ) ) e. _V |
26 |
|
vex |
|- x e. _V |
27 |
|
fvex |
|- ( 2nd ` a ) e. _V |
28 |
26 27
|
coex |
|- ( x o. ( 2nd ` a ) ) e. _V |
29 |
25 28
|
op1st |
|- ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) = ( x ` ( 1st ` a ) ) |
30 |
29
|
coeq1i |
|- ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) = ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) |
31 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
32 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> x e. ( ( TEndo ` K ) ` W ) ) |
33 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( X e. B /\ X .<_ W ) ) |
34 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> a e. ( I ` X ) ) |
35 |
1 2 3 14 5
|
dibelval1st1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ a e. ( I ` X ) ) -> ( 1st ` a ) e. ( ( LTrn ` K ) ` W ) ) |
36 |
31 33 34 35
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 1st ` a ) e. ( ( LTrn ` K ) ` W ) ) |
37 |
3 14 8
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) /\ ( 1st ` a ) e. ( ( LTrn ` K ) ` W ) ) -> ( x ` ( 1st ` a ) ) e. ( ( LTrn ` K ) ` W ) ) |
38 |
31 32 36 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x ` ( 1st ` a ) ) e. ( ( LTrn ` K ) ` W ) ) |
39 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> b e. ( I ` X ) ) |
40 |
1 2 3 14 5
|
dibelval1st1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ b e. ( I ` X ) ) -> ( 1st ` b ) e. ( ( LTrn ` K ) ` W ) ) |
41 |
31 33 39 40
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 1st ` b ) e. ( ( LTrn ` K ) ` W ) ) |
42 |
3 14
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` ( 1st ` a ) ) e. ( ( LTrn ` K ) ` W ) /\ ( 1st ` b ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( LTrn ` K ) ` W ) ) |
43 |
31 38 41 42
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( LTrn ` K ) ` W ) ) |
44 |
|
simplll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> K e. HL ) |
45 |
44
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> K e. Lat ) |
46 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
47 |
1 3 14 46
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) ) e. B ) |
48 |
31 43 47
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) ) e. B ) |
49 |
1 3 14 46
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` ( 1st ` a ) ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) e. B ) |
50 |
31 38 49
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) e. B ) |
51 |
1 3 14 46
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( 1st ` b ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) e. B ) |
52 |
31 41 51
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) e. B ) |
53 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
54 |
1 53
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) e. B /\ ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) e. B ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) ) e. B ) |
55 |
45 50 52 54
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) ) e. B ) |
56 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> X e. B ) |
57 |
2 53 3 14 46
|
trlco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` ( 1st ` a ) ) e. ( ( LTrn ` K ) ` W ) /\ ( 1st ` b ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) ) .<_ ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) ) ) |
58 |
31 38 41 57
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) ) .<_ ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) ) ) |
59 |
1 3 14 46
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( 1st ` a ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` a ) ) e. B ) |
60 |
31 36 59
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` a ) ) e. B ) |
61 |
2 3 14 46 8
|
tendotp |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) /\ ( 1st ` a ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) .<_ ( ( ( trL ` K ) ` W ) ` ( 1st ` a ) ) ) |
62 |
31 32 36 61
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) .<_ ( ( ( trL ` K ) ` W ) ` ( 1st ` a ) ) ) |
63 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
64 |
1 2 3 63 5
|
dibelval1st |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ a e. ( I ` X ) ) -> ( 1st ` a ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) |
65 |
31 33 34 64
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 1st ` a ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) |
66 |
1 2 3 14 46 63
|
diatrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( 1st ` a ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` a ) ) .<_ X ) |
67 |
31 33 65 66
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` a ) ) .<_ X ) |
68 |
1 2 45 50 60 56 62 67
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) .<_ X ) |
69 |
1 2 3 63 5
|
dibelval1st |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ b e. ( I ` X ) ) -> ( 1st ` b ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) |
70 |
31 33 39 69
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 1st ` b ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) |
71 |
1 2 3 14 46 63
|
diatrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( 1st ` b ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) .<_ X ) |
72 |
31 33 70 71
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) .<_ X ) |
73 |
1 2 53
|
latjle12 |
|- ( ( K e. Lat /\ ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) e. B /\ ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) e. B /\ X e. B ) ) -> ( ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) .<_ X /\ ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) .<_ X ) <-> ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) ) .<_ X ) ) |
74 |
45 50 52 56 73
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) .<_ X /\ ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) .<_ X ) <-> ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) ) .<_ X ) ) |
75 |
68 72 74
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` ( 1st ` a ) ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` ( 1st ` b ) ) ) .<_ X ) |
76 |
1 2 45 48 55 56 58 75
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) ) .<_ X ) |
77 |
1 2 3 14 46 63
|
diaelval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) <-> ( ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( LTrn ` K ) ` W ) /\ ( ( ( trL ` K ) ` W ) ` ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) ) .<_ X ) ) ) |
78 |
77
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) <-> ( ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( LTrn ` K ) ` W ) /\ ( ( ( trL ` K ) ` W ) ` ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) ) .<_ X ) ) ) |
79 |
43 76 78
|
mpbir2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` ( 1st ` a ) ) o. ( 1st ` b ) ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) |
80 |
30 79
|
eqeltrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) |
81 |
|
eqid |
|- ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) |
82 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
83 |
3 14 8 4 9 81 82
|
dvhfplusr |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` ( Scalar ` U ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ) |
84 |
83
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( +g ` ( Scalar ` U ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ) |
85 |
25 28
|
op2nd |
|- ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) = ( x o. ( 2nd ` a ) ) |
86 |
|
eqid |
|- ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
87 |
1 2 3 14 86 5
|
dibelval2nd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ a e. ( I ` X ) ) -> ( 2nd ` a ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
88 |
31 33 34 87
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 2nd ` a ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
89 |
88
|
coeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x o. ( 2nd ` a ) ) = ( x o. ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) ) |
90 |
1 3 14 8 86
|
tendo0mulr |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( x o. ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
91 |
31 32 90
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x o. ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
92 |
89 91
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x o. ( 2nd ` a ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
93 |
85 92
|
syl5eq |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
94 |
1 2 3 14 86 5
|
dibelval2nd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ b e. ( I ` X ) ) -> ( 2nd ` b ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
95 |
31 33 39 94
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 2nd ` b ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
96 |
84 93 95
|
oveq123d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) = ( ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) ) |
97 |
|
simpllr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> W e. H ) |
98 |
1 3 14 8 86
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) |
99 |
98
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) |
100 |
1 3 14 8 86 81
|
tendo0pl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) -> ( ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
101 |
44 97 99 100
|
syl21anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
102 |
96 101
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
103 |
|
ovex |
|- ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) e. _V |
104 |
103
|
elsn |
|- ( ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) e. { ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } <-> ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) ) |
105 |
102 104
|
sylibr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) e. { ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) |
106 |
|
opelxpi |
|- ( ( ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) e. { ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) -> <. ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) , ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) >. e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) ) |
107 |
80 105 106
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> <. ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) , ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) >. e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) ) |
108 |
23
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( I ` X ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
109 |
108 34
|
sseldd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> a e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
110 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
111 |
3 14 8 4 110
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) ) -> ( x ( .s ` U ) a ) = <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) |
112 |
31 32 109 111
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x ( .s ` U ) a ) = <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) |
113 |
112
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) = ( <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ( +g ` U ) b ) ) |
114 |
88 99
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( 2nd ` a ) e. ( ( TEndo ` K ) ` W ) ) |
115 |
3 8
|
tendococl |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) /\ ( 2nd ` a ) e. ( ( TEndo ` K ) ` W ) ) -> ( x o. ( 2nd ` a ) ) e. ( ( TEndo ` K ) ` W ) ) |
116 |
31 32 114 115
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x o. ( 2nd ` a ) ) e. ( ( TEndo ` K ) ` W ) ) |
117 |
|
opelxpi |
|- ( ( ( x ` ( 1st ` a ) ) e. ( ( LTrn ` K ) ` W ) /\ ( x o. ( 2nd ` a ) ) e. ( ( TEndo ` K ) ` W ) ) -> <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
118 |
38 116 117
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
119 |
108 39
|
sseldd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> b e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
120 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
121 |
3 14 8 4 9 120 82
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) /\ b e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) ) -> ( <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ( +g ` U ) b ) = <. ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) , ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) >. ) |
122 |
31 118 119 121
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ( +g ` U ) b ) = <. ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) , ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) >. ) |
123 |
113 122
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) = <. ( ( 1st ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) o. ( 1st ` b ) ) , ( ( 2nd ` <. ( x ` ( 1st ` a ) ) , ( x o. ( 2nd ` a ) ) >. ) ( +g ` ( Scalar ` U ) ) ( 2nd ` b ) ) >. ) |
124 |
1 2 3 14 86 63 5
|
dibval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) ) |
125 |
124
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( I ` X ) = ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) } ) ) |
126 |
107 123 125
|
3eltr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) e. ( I ` X ) ) |
127 |
7 13 18 19 20 21 23 24 126
|
islssd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) e. S ) |