Metamath Proof Explorer


Theorem diblss

Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014)

Ref Expression
Hypotheses diblss.b B=BaseK
diblss.l ˙=K
diblss.h H=LHypK
diblss.u U=DVecHKW
diblss.i I=DIsoBKW
diblss.s S=LSubSpU
Assertion diblss KHLWHXBX˙WIXS

Proof

Step Hyp Ref Expression
1 diblss.b B=BaseK
2 diblss.l ˙=K
3 diblss.h H=LHypK
4 diblss.u U=DVecHKW
5 diblss.i I=DIsoBKW
6 diblss.s S=LSubSpU
7 eqidd KHLWHXBX˙WScalarU=ScalarU
8 eqid TEndoKW=TEndoKW
9 eqid ScalarU=ScalarU
10 eqid BaseScalarU=BaseScalarU
11 3 8 4 9 10 dvhbase KHLWHBaseScalarU=TEndoKW
12 11 eqcomd KHLWHTEndoKW=BaseScalarU
13 12 adantr KHLWHXBX˙WTEndoKW=BaseScalarU
14 eqid LTrnKW=LTrnKW
15 eqid BaseU=BaseU
16 3 14 8 4 15 dvhvbase KHLWHBaseU=LTrnKW×TEndoKW
17 16 eqcomd KHLWHLTrnKW×TEndoKW=BaseU
18 17 adantr KHLWHXBX˙WLTrnKW×TEndoKW=BaseU
19 eqidd KHLWHXBX˙W+U=+U
20 eqidd KHLWHXBX˙WU=U
21 6 a1i KHLWHXBX˙WS=LSubSpU
22 1 2 3 5 4 15 dibss KHLWHXBX˙WIXBaseU
23 22 18 sseqtrrd KHLWHXBX˙WIXLTrnKW×TEndoKW
24 1 2 3 5 dibn0 KHLWHXBX˙WIX
25 fvex x1staV
26 vex xV
27 fvex 2ndaV
28 26 27 coex x2ndaV
29 25 28 op1st 1stx1stax2nda=x1sta
30 29 coeq1i 1stx1stax2nda1stb=x1sta1stb
31 simpll KHLWHXBX˙WxTEndoKWaIXbIXKHLWH
32 simpr1 KHLWHXBX˙WxTEndoKWaIXbIXxTEndoKW
33 simplr KHLWHXBX˙WxTEndoKWaIXbIXXBX˙W
34 simpr2 KHLWHXBX˙WxTEndoKWaIXbIXaIX
35 1 2 3 14 5 dibelval1st1 KHLWHXBX˙WaIX1staLTrnKW
36 31 33 34 35 syl3anc KHLWHXBX˙WxTEndoKWaIXbIX1staLTrnKW
37 3 14 8 tendocl KHLWHxTEndoKW1staLTrnKWx1staLTrnKW
38 31 32 36 37 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXx1staLTrnKW
39 simpr3 KHLWHXBX˙WxTEndoKWaIXbIXbIX
40 1 2 3 14 5 dibelval1st1 KHLWHXBX˙WbIX1stbLTrnKW
41 31 33 39 40 syl3anc KHLWHXBX˙WxTEndoKWaIXbIX1stbLTrnKW
42 3 14 ltrnco KHLWHx1staLTrnKW1stbLTrnKWx1sta1stbLTrnKW
43 31 38 41 42 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXx1sta1stbLTrnKW
44 simplll KHLWHXBX˙WxTEndoKWaIXbIXKHL
45 44 hllatd KHLWHXBX˙WxTEndoKWaIXbIXKLat
46 eqid trLKW=trLKW
47 1 3 14 46 trlcl KHLWHx1sta1stbLTrnKWtrLKWx1sta1stbB
48 31 43 47 syl2anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1sta1stbB
49 1 3 14 46 trlcl KHLWHx1staLTrnKWtrLKWx1staB
50 31 38 49 syl2anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1staB
51 1 3 14 46 trlcl KHLWH1stbLTrnKWtrLKW1stbB
52 31 41 51 syl2anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKW1stbB
53 eqid joinK=joinK
54 1 53 latjcl KLattrLKWx1staBtrLKW1stbBtrLKWx1stajoinKtrLKW1stbB
55 45 50 52 54 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1stajoinKtrLKW1stbB
56 simplrl KHLWHXBX˙WxTEndoKWaIXbIXXB
57 2 53 3 14 46 trlco KHLWHx1staLTrnKW1stbLTrnKWtrLKWx1sta1stb˙trLKWx1stajoinKtrLKW1stb
58 31 38 41 57 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1sta1stb˙trLKWx1stajoinKtrLKW1stb
59 1 3 14 46 trlcl KHLWH1staLTrnKWtrLKW1staB
60 31 36 59 syl2anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKW1staB
61 2 3 14 46 8 tendotp KHLWHxTEndoKW1staLTrnKWtrLKWx1sta˙trLKW1sta
62 31 32 36 61 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1sta˙trLKW1sta
63 eqid DIsoAKW=DIsoAKW
64 1 2 3 63 5 dibelval1st KHLWHXBX˙WaIX1staDIsoAKWX
65 31 33 34 64 syl3anc KHLWHXBX˙WxTEndoKWaIXbIX1staDIsoAKWX
66 1 2 3 14 46 63 diatrl KHLWHXBX˙W1staDIsoAKWXtrLKW1sta˙X
67 31 33 65 66 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKW1sta˙X
68 1 2 45 50 60 56 62 67 lattrd KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1sta˙X
69 1 2 3 63 5 dibelval1st KHLWHXBX˙WbIX1stbDIsoAKWX
70 31 33 39 69 syl3anc KHLWHXBX˙WxTEndoKWaIXbIX1stbDIsoAKWX
71 1 2 3 14 46 63 diatrl KHLWHXBX˙W1stbDIsoAKWXtrLKW1stb˙X
72 31 33 70 71 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKW1stb˙X
73 1 2 53 latjle12 KLattrLKWx1staBtrLKW1stbBXBtrLKWx1sta˙XtrLKW1stb˙XtrLKWx1stajoinKtrLKW1stb˙X
74 45 50 52 56 73 syl13anc KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1sta˙XtrLKW1stb˙XtrLKWx1stajoinKtrLKW1stb˙X
75 68 72 74 mpbi2and KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1stajoinKtrLKW1stb˙X
76 1 2 45 48 55 56 58 75 lattrd KHLWHXBX˙WxTEndoKWaIXbIXtrLKWx1sta1stb˙X
77 1 2 3 14 46 63 diaelval KHLWHXBX˙Wx1sta1stbDIsoAKWXx1sta1stbLTrnKWtrLKWx1sta1stb˙X
78 77 adantr KHLWHXBX˙WxTEndoKWaIXbIXx1sta1stbDIsoAKWXx1sta1stbLTrnKWtrLKWx1sta1stb˙X
79 43 76 78 mpbir2and KHLWHXBX˙WxTEndoKWaIXbIXx1sta1stbDIsoAKWX
80 30 79 eqeltrid KHLWHXBX˙WxTEndoKWaIXbIX1stx1stax2nda1stbDIsoAKWX
81 eqid sTEndoKW,tTEndoKWhLTrnKWshth=sTEndoKW,tTEndoKWhLTrnKWshth
82 eqid +ScalarU=+ScalarU
83 3 14 8 4 9 81 82 dvhfplusr KHLWH+ScalarU=sTEndoKW,tTEndoKWhLTrnKWshth
84 83 ad2antrr KHLWHXBX˙WxTEndoKWaIXbIX+ScalarU=sTEndoKW,tTEndoKWhLTrnKWshth
85 25 28 op2nd 2ndx1stax2nda=x2nda
86 eqid hLTrnKWIB=hLTrnKWIB
87 1 2 3 14 86 5 dibelval2nd KHLWHXBX˙WaIX2nda=hLTrnKWIB
88 31 33 34 87 syl3anc KHLWHXBX˙WxTEndoKWaIXbIX2nda=hLTrnKWIB
89 88 coeq2d KHLWHXBX˙WxTEndoKWaIXbIXx2nda=xhLTrnKWIB
90 1 3 14 8 86 tendo0mulr KHLWHxTEndoKWxhLTrnKWIB=hLTrnKWIB
91 31 32 90 syl2anc KHLWHXBX˙WxTEndoKWaIXbIXxhLTrnKWIB=hLTrnKWIB
92 89 91 eqtrd KHLWHXBX˙WxTEndoKWaIXbIXx2nda=hLTrnKWIB
93 85 92 eqtrid KHLWHXBX˙WxTEndoKWaIXbIX2ndx1stax2nda=hLTrnKWIB
94 1 2 3 14 86 5 dibelval2nd KHLWHXBX˙WbIX2ndb=hLTrnKWIB
95 31 33 39 94 syl3anc KHLWHXBX˙WxTEndoKWaIXbIX2ndb=hLTrnKWIB
96 84 93 95 oveq123d KHLWHXBX˙WxTEndoKWaIXbIX2ndx1stax2nda+ScalarU2ndb=hLTrnKWIBsTEndoKW,tTEndoKWhLTrnKWshthhLTrnKWIB
97 simpllr KHLWHXBX˙WxTEndoKWaIXbIXWH
98 1 3 14 8 86 tendo0cl KHLWHhLTrnKWIBTEndoKW
99 98 ad2antrr KHLWHXBX˙WxTEndoKWaIXbIXhLTrnKWIBTEndoKW
100 1 3 14 8 86 81 tendo0pl KHLWHhLTrnKWIBTEndoKWhLTrnKWIBsTEndoKW,tTEndoKWhLTrnKWshthhLTrnKWIB=hLTrnKWIB
101 44 97 99 100 syl21anc KHLWHXBX˙WxTEndoKWaIXbIXhLTrnKWIBsTEndoKW,tTEndoKWhLTrnKWshthhLTrnKWIB=hLTrnKWIB
102 96 101 eqtrd KHLWHXBX˙WxTEndoKWaIXbIX2ndx1stax2nda+ScalarU2ndb=hLTrnKWIB
103 ovex 2ndx1stax2nda+ScalarU2ndbV
104 103 elsn 2ndx1stax2nda+ScalarU2ndbhLTrnKWIB2ndx1stax2nda+ScalarU2ndb=hLTrnKWIB
105 102 104 sylibr KHLWHXBX˙WxTEndoKWaIXbIX2ndx1stax2nda+ScalarU2ndbhLTrnKWIB
106 opelxpi 1stx1stax2nda1stbDIsoAKWX2ndx1stax2nda+ScalarU2ndbhLTrnKWIB1stx1stax2nda1stb2ndx1stax2nda+ScalarU2ndbDIsoAKWX×hLTrnKWIB
107 80 105 106 syl2anc KHLWHXBX˙WxTEndoKWaIXbIX1stx1stax2nda1stb2ndx1stax2nda+ScalarU2ndbDIsoAKWX×hLTrnKWIB
108 23 adantr KHLWHXBX˙WxTEndoKWaIXbIXIXLTrnKW×TEndoKW
109 108 34 sseldd KHLWHXBX˙WxTEndoKWaIXbIXaLTrnKW×TEndoKW
110 eqid U=U
111 3 14 8 4 110 dvhvsca KHLWHxTEndoKWaLTrnKW×TEndoKWxUa=x1stax2nda
112 31 32 109 111 syl12anc KHLWHXBX˙WxTEndoKWaIXbIXxUa=x1stax2nda
113 112 oveq1d KHLWHXBX˙WxTEndoKWaIXbIXxUa+Ub=x1stax2nda+Ub
114 88 99 eqeltrd KHLWHXBX˙WxTEndoKWaIXbIX2ndaTEndoKW
115 3 8 tendococl KHLWHxTEndoKW2ndaTEndoKWx2ndaTEndoKW
116 31 32 114 115 syl3anc KHLWHXBX˙WxTEndoKWaIXbIXx2ndaTEndoKW
117 opelxpi x1staLTrnKWx2ndaTEndoKWx1stax2ndaLTrnKW×TEndoKW
118 38 116 117 syl2anc KHLWHXBX˙WxTEndoKWaIXbIXx1stax2ndaLTrnKW×TEndoKW
119 108 39 sseldd KHLWHXBX˙WxTEndoKWaIXbIXbLTrnKW×TEndoKW
120 eqid +U=+U
121 3 14 8 4 9 120 82 dvhvadd KHLWHx1stax2ndaLTrnKW×TEndoKWbLTrnKW×TEndoKWx1stax2nda+Ub=1stx1stax2nda1stb2ndx1stax2nda+ScalarU2ndb
122 31 118 119 121 syl12anc KHLWHXBX˙WxTEndoKWaIXbIXx1stax2nda+Ub=1stx1stax2nda1stb2ndx1stax2nda+ScalarU2ndb
123 113 122 eqtrd KHLWHXBX˙WxTEndoKWaIXbIXxUa+Ub=1stx1stax2nda1stb2ndx1stax2nda+ScalarU2ndb
124 1 2 3 14 86 63 5 dibval2 KHLWHXBX˙WIX=DIsoAKWX×hLTrnKWIB
125 124 adantr KHLWHXBX˙WxTEndoKWaIXbIXIX=DIsoAKWX×hLTrnKWIB
126 107 123 125 3eltr4d KHLWHXBX˙WxTEndoKWaIXbIXxUa+UbIX
127 7 13 18 19 20 21 23 24 126 islssd KHLWHXBX˙WIXS