Metamath Proof Explorer


Theorem diblss

Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014)

Ref Expression
Hypotheses diblss.b B = Base K
diblss.l ˙ = K
diblss.h H = LHyp K
diblss.u U = DVecH K W
diblss.i I = DIsoB K W
diblss.s S = LSubSp U
Assertion diblss K HL W H X B X ˙ W I X S

Proof

Step Hyp Ref Expression
1 diblss.b B = Base K
2 diblss.l ˙ = K
3 diblss.h H = LHyp K
4 diblss.u U = DVecH K W
5 diblss.i I = DIsoB K W
6 diblss.s S = LSubSp U
7 eqidd K HL W H X B X ˙ W Scalar U = Scalar U
8 eqid TEndo K W = TEndo K W
9 eqid Scalar U = Scalar U
10 eqid Base Scalar U = Base Scalar U
11 3 8 4 9 10 dvhbase K HL W H Base Scalar U = TEndo K W
12 11 eqcomd K HL W H TEndo K W = Base Scalar U
13 12 adantr K HL W H X B X ˙ W TEndo K W = Base Scalar U
14 eqid LTrn K W = LTrn K W
15 eqid Base U = Base U
16 3 14 8 4 15 dvhvbase K HL W H Base U = LTrn K W × TEndo K W
17 16 eqcomd K HL W H LTrn K W × TEndo K W = Base U
18 17 adantr K HL W H X B X ˙ W LTrn K W × TEndo K W = Base U
19 eqidd K HL W H X B X ˙ W + U = + U
20 eqidd K HL W H X B X ˙ W U = U
21 6 a1i K HL W H X B X ˙ W S = LSubSp U
22 1 2 3 5 4 15 dibss K HL W H X B X ˙ W I X Base U
23 22 18 sseqtrrd K HL W H X B X ˙ W I X LTrn K W × TEndo K W
24 1 2 3 5 dibn0 K HL W H X B X ˙ W I X
25 fvex x 1 st a V
26 vex x V
27 fvex 2 nd a V
28 26 27 coex x 2 nd a V
29 25 28 op1st 1 st x 1 st a x 2 nd a = x 1 st a
30 29 coeq1i 1 st x 1 st a x 2 nd a 1 st b = x 1 st a 1 st b
31 simpll K HL W H X B X ˙ W x TEndo K W a I X b I X K HL W H
32 simpr1 K HL W H X B X ˙ W x TEndo K W a I X b I X x TEndo K W
33 simplr K HL W H X B X ˙ W x TEndo K W a I X b I X X B X ˙ W
34 simpr2 K HL W H X B X ˙ W x TEndo K W a I X b I X a I X
35 1 2 3 14 5 dibelval1st1 K HL W H X B X ˙ W a I X 1 st a LTrn K W
36 31 33 34 35 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X 1 st a LTrn K W
37 3 14 8 tendocl K HL W H x TEndo K W 1 st a LTrn K W x 1 st a LTrn K W
38 31 32 36 37 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X x 1 st a LTrn K W
39 simpr3 K HL W H X B X ˙ W x TEndo K W a I X b I X b I X
40 1 2 3 14 5 dibelval1st1 K HL W H X B X ˙ W b I X 1 st b LTrn K W
41 31 33 39 40 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X 1 st b LTrn K W
42 3 14 ltrnco K HL W H x 1 st a LTrn K W 1 st b LTrn K W x 1 st a 1 st b LTrn K W
43 31 38 41 42 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X x 1 st a 1 st b LTrn K W
44 simplll K HL W H X B X ˙ W x TEndo K W a I X b I X K HL
45 44 hllatd K HL W H X B X ˙ W x TEndo K W a I X b I X K Lat
46 eqid trL K W = trL K W
47 1 3 14 46 trlcl K HL W H x 1 st a 1 st b LTrn K W trL K W x 1 st a 1 st b B
48 31 43 47 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a 1 st b B
49 1 3 14 46 trlcl K HL W H x 1 st a LTrn K W trL K W x 1 st a B
50 31 38 49 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a B
51 1 3 14 46 trlcl K HL W H 1 st b LTrn K W trL K W 1 st b B
52 31 41 51 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W 1 st b B
53 eqid join K = join K
54 1 53 latjcl K Lat trL K W x 1 st a B trL K W 1 st b B trL K W x 1 st a join K trL K W 1 st b B
55 45 50 52 54 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a join K trL K W 1 st b B
56 simplrl K HL W H X B X ˙ W x TEndo K W a I X b I X X B
57 2 53 3 14 46 trlco K HL W H x 1 st a LTrn K W 1 st b LTrn K W trL K W x 1 st a 1 st b ˙ trL K W x 1 st a join K trL K W 1 st b
58 31 38 41 57 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a 1 st b ˙ trL K W x 1 st a join K trL K W 1 st b
59 1 3 14 46 trlcl K HL W H 1 st a LTrn K W trL K W 1 st a B
60 31 36 59 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W 1 st a B
61 2 3 14 46 8 tendotp K HL W H x TEndo K W 1 st a LTrn K W trL K W x 1 st a ˙ trL K W 1 st a
62 31 32 36 61 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a ˙ trL K W 1 st a
63 eqid DIsoA K W = DIsoA K W
64 1 2 3 63 5 dibelval1st K HL W H X B X ˙ W a I X 1 st a DIsoA K W X
65 31 33 34 64 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X 1 st a DIsoA K W X
66 1 2 3 14 46 63 diatrl K HL W H X B X ˙ W 1 st a DIsoA K W X trL K W 1 st a ˙ X
67 31 33 65 66 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W 1 st a ˙ X
68 1 2 45 50 60 56 62 67 lattrd K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a ˙ X
69 1 2 3 63 5 dibelval1st K HL W H X B X ˙ W b I X 1 st b DIsoA K W X
70 31 33 39 69 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X 1 st b DIsoA K W X
71 1 2 3 14 46 63 diatrl K HL W H X B X ˙ W 1 st b DIsoA K W X trL K W 1 st b ˙ X
72 31 33 70 71 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W 1 st b ˙ X
73 1 2 53 latjle12 K Lat trL K W x 1 st a B trL K W 1 st b B X B trL K W x 1 st a ˙ X trL K W 1 st b ˙ X trL K W x 1 st a join K trL K W 1 st b ˙ X
74 45 50 52 56 73 syl13anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a ˙ X trL K W 1 st b ˙ X trL K W x 1 st a join K trL K W 1 st b ˙ X
75 68 72 74 mpbi2and K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a join K trL K W 1 st b ˙ X
76 1 2 45 48 55 56 58 75 lattrd K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x 1 st a 1 st b ˙ X
77 1 2 3 14 46 63 diaelval K HL W H X B X ˙ W x 1 st a 1 st b DIsoA K W X x 1 st a 1 st b LTrn K W trL K W x 1 st a 1 st b ˙ X
78 77 adantr K HL W H X B X ˙ W x TEndo K W a I X b I X x 1 st a 1 st b DIsoA K W X x 1 st a 1 st b LTrn K W trL K W x 1 st a 1 st b ˙ X
79 43 76 78 mpbir2and K HL W H X B X ˙ W x TEndo K W a I X b I X x 1 st a 1 st b DIsoA K W X
80 30 79 eqeltrid K HL W H X B X ˙ W x TEndo K W a I X b I X 1 st x 1 st a x 2 nd a 1 st b DIsoA K W X
81 eqid s TEndo K W , t TEndo K W h LTrn K W s h t h = s TEndo K W , t TEndo K W h LTrn K W s h t h
82 eqid + Scalar U = + Scalar U
83 3 14 8 4 9 81 82 dvhfplusr K HL W H + Scalar U = s TEndo K W , t TEndo K W h LTrn K W s h t h
84 83 ad2antrr K HL W H X B X ˙ W x TEndo K W a I X b I X + Scalar U = s TEndo K W , t TEndo K W h LTrn K W s h t h
85 25 28 op2nd 2 nd x 1 st a x 2 nd a = x 2 nd a
86 eqid h LTrn K W I B = h LTrn K W I B
87 1 2 3 14 86 5 dibelval2nd K HL W H X B X ˙ W a I X 2 nd a = h LTrn K W I B
88 31 33 34 87 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X 2 nd a = h LTrn K W I B
89 88 coeq2d K HL W H X B X ˙ W x TEndo K W a I X b I X x 2 nd a = x h LTrn K W I B
90 1 3 14 8 86 tendo0mulr K HL W H x TEndo K W x h LTrn K W I B = h LTrn K W I B
91 31 32 90 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X x h LTrn K W I B = h LTrn K W I B
92 89 91 eqtrd K HL W H X B X ˙ W x TEndo K W a I X b I X x 2 nd a = h LTrn K W I B
93 85 92 eqtrid K HL W H X B X ˙ W x TEndo K W a I X b I X 2 nd x 1 st a x 2 nd a = h LTrn K W I B
94 1 2 3 14 86 5 dibelval2nd K HL W H X B X ˙ W b I X 2 nd b = h LTrn K W I B
95 31 33 39 94 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X 2 nd b = h LTrn K W I B
96 84 93 95 oveq123d K HL W H X B X ˙ W x TEndo K W a I X b I X 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b = h LTrn K W I B s TEndo K W , t TEndo K W h LTrn K W s h t h h LTrn K W I B
97 simpllr K HL W H X B X ˙ W x TEndo K W a I X b I X W H
98 1 3 14 8 86 tendo0cl K HL W H h LTrn K W I B TEndo K W
99 98 ad2antrr K HL W H X B X ˙ W x TEndo K W a I X b I X h LTrn K W I B TEndo K W
100 1 3 14 8 86 81 tendo0pl K HL W H h LTrn K W I B TEndo K W h LTrn K W I B s TEndo K W , t TEndo K W h LTrn K W s h t h h LTrn K W I B = h LTrn K W I B
101 44 97 99 100 syl21anc K HL W H X B X ˙ W x TEndo K W a I X b I X h LTrn K W I B s TEndo K W , t TEndo K W h LTrn K W s h t h h LTrn K W I B = h LTrn K W I B
102 96 101 eqtrd K HL W H X B X ˙ W x TEndo K W a I X b I X 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b = h LTrn K W I B
103 ovex 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b V
104 103 elsn 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b h LTrn K W I B 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b = h LTrn K W I B
105 102 104 sylibr K HL W H X B X ˙ W x TEndo K W a I X b I X 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b h LTrn K W I B
106 opelxpi 1 st x 1 st a x 2 nd a 1 st b DIsoA K W X 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b h LTrn K W I B 1 st x 1 st a x 2 nd a 1 st b 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b DIsoA K W X × h LTrn K W I B
107 80 105 106 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X 1 st x 1 st a x 2 nd a 1 st b 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b DIsoA K W X × h LTrn K W I B
108 23 adantr K HL W H X B X ˙ W x TEndo K W a I X b I X I X LTrn K W × TEndo K W
109 108 34 sseldd K HL W H X B X ˙ W x TEndo K W a I X b I X a LTrn K W × TEndo K W
110 eqid U = U
111 3 14 8 4 110 dvhvsca K HL W H x TEndo K W a LTrn K W × TEndo K W x U a = x 1 st a x 2 nd a
112 31 32 109 111 syl12anc K HL W H X B X ˙ W x TEndo K W a I X b I X x U a = x 1 st a x 2 nd a
113 112 oveq1d K HL W H X B X ˙ W x TEndo K W a I X b I X x U a + U b = x 1 st a x 2 nd a + U b
114 88 99 eqeltrd K HL W H X B X ˙ W x TEndo K W a I X b I X 2 nd a TEndo K W
115 3 8 tendococl K HL W H x TEndo K W 2 nd a TEndo K W x 2 nd a TEndo K W
116 31 32 114 115 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X x 2 nd a TEndo K W
117 opelxpi x 1 st a LTrn K W x 2 nd a TEndo K W x 1 st a x 2 nd a LTrn K W × TEndo K W
118 38 116 117 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X x 1 st a x 2 nd a LTrn K W × TEndo K W
119 108 39 sseldd K HL W H X B X ˙ W x TEndo K W a I X b I X b LTrn K W × TEndo K W
120 eqid + U = + U
121 3 14 8 4 9 120 82 dvhvadd K HL W H x 1 st a x 2 nd a LTrn K W × TEndo K W b LTrn K W × TEndo K W x 1 st a x 2 nd a + U b = 1 st x 1 st a x 2 nd a 1 st b 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b
122 31 118 119 121 syl12anc K HL W H X B X ˙ W x TEndo K W a I X b I X x 1 st a x 2 nd a + U b = 1 st x 1 st a x 2 nd a 1 st b 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b
123 113 122 eqtrd K HL W H X B X ˙ W x TEndo K W a I X b I X x U a + U b = 1 st x 1 st a x 2 nd a 1 st b 2 nd x 1 st a x 2 nd a + Scalar U 2 nd b
124 1 2 3 14 86 63 5 dibval2 K HL W H X B X ˙ W I X = DIsoA K W X × h LTrn K W I B
125 124 adantr K HL W H X B X ˙ W x TEndo K W a I X b I X I X = DIsoA K W X × h LTrn K W I B
126 107 123 125 3eltr4d K HL W H X B X ˙ W x TEndo K W a I X b I X x U a + U b I X
127 7 13 18 19 20 21 23 24 126 islssd K HL W H X B X ˙ W I X S