Step |
Hyp |
Ref |
Expression |
1 |
|
diblss.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
diblss.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
diblss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
diblss.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
diblss.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
diblss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
7 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) ) |
8 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
11 |
3 8 4 9 10
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
11
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
14 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
16 |
3 14 8 4 15
|
dvhvbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝑈 ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) ) |
19 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) |
20 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) ) |
21 |
6
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → 𝑆 = ( LSubSp ‘ 𝑈 ) ) |
22 |
1 2 3 5 4 15
|
dibss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ 𝑈 ) ) |
23 |
22 18
|
sseqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
24 |
1 2 3 5
|
dibn0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ≠ ∅ ) |
25 |
|
fvex |
⊢ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∈ V |
26 |
|
vex |
⊢ 𝑥 ∈ V |
27 |
|
fvex |
⊢ ( 2nd ‘ 𝑎 ) ∈ V |
28 |
26 27
|
coex |
⊢ ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) ∈ V |
29 |
25 28
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) = ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) |
30 |
29
|
coeq1i |
⊢ ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) = ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) |
31 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
32 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
33 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
34 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ) |
35 |
1 2 3 14 5
|
dibelval1st1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 1st ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
36 |
31 33 34 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 1st ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
37 |
3 14 8
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
38 |
31 32 36 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
39 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) |
40 |
1 2 3 14 5
|
dibelval1st1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 1st ‘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
41 |
31 33 39 40
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 1st ‘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
42 |
3 14
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st ‘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
43 |
31 38 41 42
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
44 |
|
simplll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝐾 ∈ HL ) |
45 |
44
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝐾 ∈ Lat ) |
46 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
47 |
1 3 14 46
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ) ∈ 𝐵 ) |
48 |
31 43 47
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ) ∈ 𝐵 ) |
49 |
1 3 14 46
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ∈ 𝐵 ) |
50 |
31 38 49
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ∈ 𝐵 ) |
51 |
1 3 14 46
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 1st ‘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ∈ 𝐵 ) |
52 |
31 41 51
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ∈ 𝐵 ) |
53 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
54 |
1 53
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ∈ 𝐵 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ∈ 𝐵 ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ) ∈ 𝐵 ) |
55 |
45 50 52 54
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ) ∈ 𝐵 ) |
56 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
57 |
2 53 3 14 46
|
trlco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st ‘ 𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ) ≤ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ) ) |
58 |
31 38 41 57
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ) ≤ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ) ) |
59 |
1 3 14 46
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑎 ) ) ∈ 𝐵 ) |
60 |
31 36 59
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑎 ) ) ∈ 𝐵 ) |
61 |
2 3 14 46 8
|
tendotp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑎 ) ) ) |
62 |
31 32 36 61
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ≤ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑎 ) ) ) |
63 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
64 |
1 2 3 63 5
|
dibelval1st |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 1st ‘ 𝑎 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
65 |
31 33 34 64
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 1st ‘ 𝑎 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
66 |
1 2 3 14 46 63
|
diatrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 1st ‘ 𝑎 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑎 ) ) ≤ 𝑋 ) |
67 |
31 33 65 66
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑎 ) ) ≤ 𝑋 ) |
68 |
1 2 45 50 60 56 62 67
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ≤ 𝑋 ) |
69 |
1 2 3 63 5
|
dibelval1st |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 1st ‘ 𝑏 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
70 |
31 33 39 69
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 1st ‘ 𝑏 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
71 |
1 2 3 14 46 63
|
diatrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 1st ‘ 𝑏 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ≤ 𝑋 ) |
72 |
31 33 70 71
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ≤ 𝑋 ) |
73 |
1 2 53
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ∈ 𝐵 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ≤ 𝑋 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ≤ 𝑋 ) ↔ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ) ≤ 𝑋 ) ) |
74 |
45 50 52 56 73
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ≤ 𝑋 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ≤ 𝑋 ) ↔ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ) ≤ 𝑋 ) ) |
75 |
68 72 74
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st ‘ 𝑏 ) ) ) ≤ 𝑋 ) |
76 |
1 2 45 48 55 56 58 75
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ) ≤ 𝑋 ) |
77 |
1 2 3 14 46 63
|
diaelval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ↔ ( ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ) ≤ 𝑋 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ↔ ( ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ) ≤ 𝑋 ) ) ) |
79 |
43 76 78
|
mpbir2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
80 |
30 79
|
eqeltrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
81 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ‘ ℎ ) ∘ ( 𝑡 ‘ ℎ ) ) ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ‘ ℎ ) ∘ ( 𝑡 ‘ ℎ ) ) ) ) |
82 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) ) |
83 |
3 14 8 4 9 81 82
|
dvhfplusr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ‘ ℎ ) ∘ ( 𝑡 ‘ ℎ ) ) ) ) ) |
84 |
83
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ‘ ℎ ) ∘ ( 𝑡 ‘ ℎ ) ) ) ) ) |
85 |
25 28
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) = ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) |
86 |
|
eqid |
⊢ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) |
87 |
1 2 3 14 86 5
|
dibelval2nd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 2nd ‘ 𝑎 ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
88 |
31 33 34 87
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 2nd ‘ 𝑎 ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
89 |
88
|
coeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) = ( 𝑥 ∘ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) ) |
90 |
1 3 14 8 86
|
tendo0mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
91 |
31 32 90
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ∘ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
92 |
89 91
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
93 |
85 92
|
syl5eq |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
94 |
1 2 3 14 86 5
|
dibelval2nd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 2nd ‘ 𝑏 ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
95 |
31 33 39 94
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 2nd ‘ 𝑏 ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
96 |
84 93 95
|
oveq123d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) = ( ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ‘ ℎ ) ∘ ( 𝑡 ‘ ℎ ) ) ) ) ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) ) |
97 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑊 ∈ 𝐻 ) |
98 |
1 3 14 8 86
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
99 |
98
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
100 |
1 3 14 8 86 81
|
tendo0pl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ‘ ℎ ) ∘ ( 𝑡 ‘ ℎ ) ) ) ) ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
101 |
44 97 99 100
|
syl21anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ‘ ℎ ) ∘ ( 𝑡 ‘ ℎ ) ) ) ) ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
102 |
96 101
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
103 |
|
ovex |
⊢ ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) ∈ V |
104 |
103
|
elsn |
⊢ ( ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) ∈ { ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ↔ ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) |
105 |
102 104
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) ∈ { ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) |
106 |
|
opelxpi |
⊢ ( ( ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) ∈ { ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) → 〈 ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) 〉 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ) |
107 |
80 105 106
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 〈 ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) 〉 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ) |
108 |
23
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
109 |
108 34
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑎 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
110 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
111 |
3 14 8 4 110
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) = 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) |
112 |
31 32 109 111
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) = 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) |
113 |
112
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) = ( 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ( +g ‘ 𝑈 ) 𝑏 ) ) |
114 |
88 99
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 2nd ‘ 𝑎 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
115 |
3 8
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 2nd ‘ 𝑎 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
116 |
31 32 114 115
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
117 |
|
opelxpi |
⊢ ( ( ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
118 |
38 116 117
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
119 |
108 39
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑏 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
120 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
121 |
3 14 8 4 9 120 82
|
dvhvadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑏 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ( +g ‘ 𝑈 ) 𝑏 ) = 〈 ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) 〉 ) |
122 |
31 118 119 121
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ( +g ‘ 𝑈 ) 𝑏 ) = 〈 ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) 〉 ) |
123 |
113 122
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) = 〈 ( ( 1st ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ∘ ( 1st ‘ 𝑏 ) ) , ( ( 2nd ‘ 〈 ( 𝑥 ‘ ( 1st ‘ 𝑎 ) ) , ( 𝑥 ∘ ( 2nd ‘ 𝑎 ) ) 〉 ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd ‘ 𝑏 ) ) 〉 ) |
124 |
1 2 3 14 86 63 5
|
dibval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ) |
125 |
124
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) ) |
126 |
107 123 125
|
3eltr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ∈ ( 𝐼 ‘ 𝑋 ) ) |
127 |
7 13 18 19 20 21 23 24 126
|
islssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |