Metamath Proof Explorer


Theorem diblss

Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014)

Ref Expression
Hypotheses diblss.b 𝐵 = ( Base ‘ 𝐾 )
diblss.l = ( le ‘ 𝐾 )
diblss.h 𝐻 = ( LHyp ‘ 𝐾 )
diblss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
diblss.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
diblss.s 𝑆 = ( LSubSp ‘ 𝑈 )
Assertion diblss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 diblss.b 𝐵 = ( Base ‘ 𝐾 )
2 diblss.l = ( le ‘ 𝐾 )
3 diblss.h 𝐻 = ( LHyp ‘ 𝐾 )
4 diblss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 diblss.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
6 diblss.s 𝑆 = ( LSubSp ‘ 𝑈 )
7 eqidd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) )
8 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
10 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
11 3 8 4 9 10 dvhbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
12 11 eqcomd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
13 12 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
14 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
15 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
16 3 14 8 4 15 dvhvbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝑈 ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
17 16 eqcomd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) )
18 17 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) )
19 eqidd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( +g𝑈 ) = ( +g𝑈 ) )
20 eqidd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ·𝑠𝑈 ) = ( ·𝑠𝑈 ) )
21 6 a1i ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → 𝑆 = ( LSubSp ‘ 𝑈 ) )
22 1 2 3 5 4 15 dibss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ⊆ ( Base ‘ 𝑈 ) )
23 22 18 sseqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
24 1 2 3 5 dibn0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ≠ ∅ )
25 fvex ( 𝑥 ‘ ( 1st𝑎 ) ) ∈ V
26 vex 𝑥 ∈ V
27 fvex ( 2nd𝑎 ) ∈ V
28 26 27 coex ( 𝑥 ∘ ( 2nd𝑎 ) ) ∈ V
29 25 28 op1st ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) = ( 𝑥 ‘ ( 1st𝑎 ) )
30 29 coeq1i ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) = ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) )
31 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
32 simpr1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
33 simplr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝑋𝐵𝑋 𝑊 ) )
34 simpr2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝑎 ∈ ( 𝐼𝑋 ) )
35 1 2 3 14 5 dibelval1st1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ) → ( 1st𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
36 31 33 34 35 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 1st𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
37 3 14 8 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ‘ ( 1st𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
38 31 32 36 37 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝑥 ‘ ( 1st𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
39 simpr3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝑏 ∈ ( 𝐼𝑋 ) )
40 1 2 3 14 5 dibelval1st1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) → ( 1st𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
41 31 33 39 40 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 1st𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
42 3 14 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑥 ‘ ( 1st𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
43 31 38 41 42 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
44 simplll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝐾 ∈ HL )
45 44 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝐾 ∈ Lat )
46 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
47 1 3 14 46 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ) ∈ 𝐵 )
48 31 43 47 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ) ∈ 𝐵 )
49 1 3 14 46 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑥 ‘ ( 1st𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ∈ 𝐵 )
50 31 38 49 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ∈ 𝐵 )
51 1 3 14 46 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 1st𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ∈ 𝐵 )
52 31 41 51 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ∈ 𝐵 )
53 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
54 1 53 latjcl ( ( 𝐾 ∈ Lat ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ∈ 𝐵 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ∈ 𝐵 ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ) ∈ 𝐵 )
55 45 50 52 54 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ) ∈ 𝐵 )
56 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝑋𝐵 )
57 2 53 3 14 46 trlco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑥 ‘ ( 1st𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st𝑏 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ) ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ) )
58 31 38 41 57 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ) ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ) )
59 1 3 14 46 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 1st𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑎 ) ) ∈ 𝐵 )
60 31 36 59 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑎 ) ) ∈ 𝐵 )
61 2 3 14 46 8 tendotp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 1st𝑎 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑎 ) ) )
62 31 32 36 61 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑎 ) ) )
63 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
64 1 2 3 63 5 dibelval1st ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ) → ( 1st𝑎 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) )
65 31 33 34 64 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 1st𝑎 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) )
66 1 2 3 14 46 63 diatrl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 1st𝑎 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑎 ) ) 𝑋 )
67 31 33 65 66 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑎 ) ) 𝑋 )
68 1 2 45 50 60 56 62 67 lattrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) 𝑋 )
69 1 2 3 63 5 dibelval1st ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) → ( 1st𝑏 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) )
70 31 33 39 69 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 1st𝑏 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) )
71 1 2 3 14 46 63 diatrl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 1st𝑏 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) 𝑋 )
72 31 33 70 71 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) 𝑋 )
73 1 2 53 latjle12 ( ( 𝐾 ∈ Lat ∧ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ∈ 𝐵 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ∈ 𝐵𝑋𝐵 ) ) → ( ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) 𝑋 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) 𝑋 ) ↔ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ) 𝑋 ) )
74 45 50 52 56 73 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) 𝑋 ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) 𝑋 ) ↔ ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ) 𝑋 ) )
75 68 72 74 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑥 ‘ ( 1st𝑎 ) ) ) ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1st𝑏 ) ) ) 𝑋 )
76 1 2 45 48 55 56 58 75 lattrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ) 𝑋 )
77 1 2 3 14 46 63 diaelval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ↔ ( ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ) 𝑋 ) ) )
78 77 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ↔ ( ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ) 𝑋 ) ) )
79 43 76 78 mpbir2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∘ ( 1st𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) )
80 30 79 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) )
81 eqid ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ) ∘ ( 𝑡 ) ) ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ) ∘ ( 𝑡 ) ) ) )
82 eqid ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) )
83 3 14 8 4 9 81 82 dvhfplusr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ) ∘ ( 𝑡 ) ) ) ) )
84 83 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ) ∘ ( 𝑡 ) ) ) ) )
85 25 28 op2nd ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) = ( 𝑥 ∘ ( 2nd𝑎 ) )
86 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) )
87 1 2 3 14 86 5 dibelval2nd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ) → ( 2nd𝑎 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
88 31 33 34 87 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 2nd𝑎 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
89 88 coeq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝑥 ∘ ( 2nd𝑎 ) ) = ( 𝑥 ∘ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) )
90 1 3 14 8 86 tendo0mulr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
91 31 32 90 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝑥 ∘ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
92 89 91 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝑥 ∘ ( 2nd𝑎 ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
93 85 92 syl5eq ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
94 1 2 3 14 86 5 dibelval2nd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) → ( 2nd𝑏 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
95 31 33 39 94 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 2nd𝑏 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
96 84 93 95 oveq123d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) = ( ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ) ∘ ( 𝑡 ) ) ) ) ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) )
97 simpllr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝑊𝐻 )
98 1 3 14 8 86 tendo0cl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
99 98 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
100 1 3 14 8 86 81 tendo0pl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ) ∘ ( 𝑡 ) ) ) ) ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
101 44 97 99 100 syl21anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( 𝑠 ) ∘ ( 𝑡 ) ) ) ) ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
102 96 101 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
103 ovex ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ∈ V
104 103 elsn ( ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ∈ { ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ↔ ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) )
105 102 104 sylibr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ∈ { ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } )
106 opelxpi ( ( ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∧ ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ∈ { ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) → ⟨ ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) , ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ⟩ ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) )
107 80 105 106 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ⟨ ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) , ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ⟩ ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) )
108 23 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝐼𝑋 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
109 108 34 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝑎 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
110 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
111 3 14 8 4 110 dvhvsca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) = ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ )
112 31 32 109 111 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) = ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ )
113 112 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) ( +g𝑈 ) 𝑏 ) = ( ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ( +g𝑈 ) 𝑏 ) )
114 88 99 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 2nd𝑎 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
115 3 8 tendococl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 2nd𝑎 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( 2nd𝑎 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
116 31 32 114 115 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝑥 ∘ ( 2nd𝑎 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
117 opelxpi ( ( ( 𝑥 ‘ ( 1st𝑎 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑥 ∘ ( 2nd𝑎 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
118 38 116 117 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
119 108 39 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → 𝑏 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
120 eqid ( +g𝑈 ) = ( +g𝑈 )
121 3 14 8 4 9 120 82 dvhvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑏 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ( +g𝑈 ) 𝑏 ) = ⟨ ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) , ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ⟩ )
122 31 118 119 121 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ( +g𝑈 ) 𝑏 ) = ⟨ ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) , ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ⟩ )
123 113 122 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) ( +g𝑈 ) 𝑏 ) = ⟨ ( ( 1st ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ∘ ( 1st𝑏 ) ) , ( ( 2nd ‘ ⟨ ( 𝑥 ‘ ( 1st𝑎 ) ) , ( 𝑥 ∘ ( 2nd𝑎 ) ) ⟩ ) ( +g ‘ ( Scalar ‘ 𝑈 ) ) ( 2nd𝑏 ) ) ⟩ )
124 1 2 3 14 86 63 5 dibval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) )
125 124 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( 𝐼𝑋 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) × { ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) } ) )
126 107 123 125 3eltr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼𝑋 ) ∧ 𝑏 ∈ ( 𝐼𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) ( +g𝑈 ) 𝑏 ) ∈ ( 𝐼𝑋 ) )
127 7 13 18 19 20 21 23 24 126 islssd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ∈ 𝑆 )