Metamath Proof Explorer


Theorem dibss

Description: The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014)

Ref Expression
Hypotheses dibss.b B = Base K
dibss.l ˙ = K
dibss.h H = LHyp K
dibss.i I = DIsoB K W
dibss.u U = DVecH K W
dibss.v V = Base U
Assertion dibss K HL W H X B X ˙ W I X V

Proof

Step Hyp Ref Expression
1 dibss.b B = Base K
2 dibss.l ˙ = K
3 dibss.h H = LHyp K
4 dibss.i I = DIsoB K W
5 dibss.u U = DVecH K W
6 dibss.v V = Base U
7 eqid LTrn K W = LTrn K W
8 eqid DIsoA K W = DIsoA K W
9 1 2 3 7 8 diass K HL W H X B X ˙ W DIsoA K W X LTrn K W
10 eqid TEndo K W = TEndo K W
11 eqid f LTrn K W I B = f LTrn K W I B
12 1 3 7 10 11 tendo0cl K HL W H f LTrn K W I B TEndo K W
13 12 snssd K HL W H f LTrn K W I B TEndo K W
14 13 adantr K HL W H X B X ˙ W f LTrn K W I B TEndo K W
15 xpss12 DIsoA K W X LTrn K W f LTrn K W I B TEndo K W DIsoA K W X × f LTrn K W I B LTrn K W × TEndo K W
16 9 14 15 syl2anc K HL W H X B X ˙ W DIsoA K W X × f LTrn K W I B LTrn K W × TEndo K W
17 1 2 3 7 11 8 4 dibval2 K HL W H X B X ˙ W I X = DIsoA K W X × f LTrn K W I B
18 3 7 10 5 6 dvhvbase K HL W H V = LTrn K W × TEndo K W
19 18 adantr K HL W H X B X ˙ W V = LTrn K W × TEndo K W
20 16 17 19 3sstr4d K HL W H X B X ˙ W I X V