Metamath Proof Explorer


Theorem dibss

Description: The partial isomorphism B maps to a set of vectors in full vector space H. (Contributed by NM, 1-Jan-2014)

Ref Expression
Hypotheses dibss.b B=BaseK
dibss.l ˙=K
dibss.h H=LHypK
dibss.i I=DIsoBKW
dibss.u U=DVecHKW
dibss.v V=BaseU
Assertion dibss KHLWHXBX˙WIXV

Proof

Step Hyp Ref Expression
1 dibss.b B=BaseK
2 dibss.l ˙=K
3 dibss.h H=LHypK
4 dibss.i I=DIsoBKW
5 dibss.u U=DVecHKW
6 dibss.v V=BaseU
7 eqid LTrnKW=LTrnKW
8 eqid DIsoAKW=DIsoAKW
9 1 2 3 7 8 diass KHLWHXBX˙WDIsoAKWXLTrnKW
10 eqid TEndoKW=TEndoKW
11 eqid fLTrnKWIB=fLTrnKWIB
12 1 3 7 10 11 tendo0cl KHLWHfLTrnKWIBTEndoKW
13 12 snssd KHLWHfLTrnKWIBTEndoKW
14 13 adantr KHLWHXBX˙WfLTrnKWIBTEndoKW
15 xpss12 DIsoAKWXLTrnKWfLTrnKWIBTEndoKWDIsoAKWX×fLTrnKWIBLTrnKW×TEndoKW
16 9 14 15 syl2anc KHLWHXBX˙WDIsoAKWX×fLTrnKWIBLTrnKW×TEndoKW
17 1 2 3 7 11 8 4 dibval2 KHLWHXBX˙WIX=DIsoAKWX×fLTrnKWIB
18 3 7 10 5 6 dvhvbase KHLWHV=LTrnKW×TEndoKW
19 18 adantr KHLWHXBX˙WV=LTrnKW×TEndoKW
20 16 17 19 3sstr4d KHLWHXBX˙WIXV