Metamath Proof Explorer


Theorem dib1dim2

Description: Two expressions for a 1-dimensional subspace of vector space H (when F is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses dib1dim2.b B = Base K
dib1dim2.h H = LHyp K
dib1dim2.t T = LTrn K W
dib1dim2.r R = trL K W
dib1dim2.o O = h T I B
dib1dim2.u U = DVecH K W
dib1dim2.i I = DIsoB K W
dib1dim2.n N = LSpan U
Assertion dib1dim2 K HL W H F T I R F = N F O

Proof

Step Hyp Ref Expression
1 dib1dim2.b B = Base K
2 dib1dim2.h H = LHyp K
3 dib1dim2.t T = LTrn K W
4 dib1dim2.r R = trL K W
5 dib1dim2.o O = h T I B
6 dib1dim2.u U = DVecH K W
7 dib1dim2.i I = DIsoB K W
8 dib1dim2.n N = LSpan U
9 df-rab u T × TEndo K W | v TEndo K W u = v F O = u | u T × TEndo K W v TEndo K W u = v F O
10 eqid TEndo K W = TEndo K W
11 1 2 3 4 10 5 7 dib1dim K HL W H F T I R F = u T × TEndo K W | v TEndo K W u = v F O
12 eqid Scalar U = Scalar U
13 eqid Base Scalar U = Base Scalar U
14 2 10 6 12 13 dvhbase K HL W H Base Scalar U = TEndo K W
15 14 adantr K HL W H F T Base Scalar U = TEndo K W
16 15 rexeqdv K HL W H F T v Base Scalar U u = v U F O v TEndo K W u = v U F O
17 simpll K HL W H F T v TEndo K W K HL W H
18 simpr K HL W H F T v TEndo K W v TEndo K W
19 simplr K HL W H F T v TEndo K W F T
20 1 2 3 10 5 tendo0cl K HL W H O TEndo K W
21 20 ad2antrr K HL W H F T v TEndo K W O TEndo K W
22 eqid U = U
23 2 3 10 6 22 dvhopvsca K HL W H v TEndo K W F T O TEndo K W v U F O = v F v O
24 17 18 19 21 23 syl13anc K HL W H F T v TEndo K W v U F O = v F v O
25 1 2 3 10 5 tendo0mulr K HL W H v TEndo K W v O = O
26 25 adantlr K HL W H F T v TEndo K W v O = O
27 26 opeq2d K HL W H F T v TEndo K W v F v O = v F O
28 24 27 eqtrd K HL W H F T v TEndo K W v U F O = v F O
29 28 eqeq2d K HL W H F T v TEndo K W u = v U F O u = v F O
30 29 rexbidva K HL W H F T v TEndo K W u = v U F O v TEndo K W u = v F O
31 2 3 10 tendocl K HL W H v TEndo K W F T v F T
32 31 3expa K HL W H v TEndo K W F T v F T
33 32 an32s K HL W H F T v TEndo K W v F T
34 opelxpi v F T O TEndo K W v F O T × TEndo K W
35 33 21 34 syl2anc K HL W H F T v TEndo K W v F O T × TEndo K W
36 eleq1a v F O T × TEndo K W u = v F O u T × TEndo K W
37 35 36 syl K HL W H F T v TEndo K W u = v F O u T × TEndo K W
38 37 rexlimdva K HL W H F T v TEndo K W u = v F O u T × TEndo K W
39 38 pm4.71rd K HL W H F T v TEndo K W u = v F O u T × TEndo K W v TEndo K W u = v F O
40 16 30 39 3bitrd K HL W H F T v Base Scalar U u = v U F O u T × TEndo K W v TEndo K W u = v F O
41 40 abbidv K HL W H F T u | v Base Scalar U u = v U F O = u | u T × TEndo K W v TEndo K W u = v F O
42 9 11 41 3eqtr4a K HL W H F T I R F = u | v Base Scalar U u = v U F O
43 simpl K HL W H F T K HL W H
44 2 6 43 dvhlmod K HL W H F T U LMod
45 simpr K HL W H F T F T
46 20 adantr K HL W H F T O TEndo K W
47 eqid Base U = Base U
48 2 3 10 6 47 dvhelvbasei K HL W H F T O TEndo K W F O Base U
49 43 45 46 48 syl12anc K HL W H F T F O Base U
50 12 13 47 22 8 lspsn U LMod F O Base U N F O = u | v Base Scalar U u = v U F O
51 44 49 50 syl2anc K HL W H F T N F O = u | v Base Scalar U u = v U F O
52 42 51 eqtr4d K HL W H F T I R F = N F O